zoukankan      html  css  js  c++  java
  • MSE(均方误差)、RMSE (均方根误差)、MAE (平均绝对误差)

    1、MSE(均方误差)(Mean Square Error)

    MSE是真实值与预测值的差值的平方然后求和平均。

     范围[0,+∞),当预测值与真实值完全相同时为0,误差越大,该值越大。

    import numpy as np
    from sklearn import metrics
    y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
    y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
    print(metrics.mean_squared_error(y_true, y_pred)) # 8.107142857142858

    2、

    RMSE (均方根误差)(Root Mean Square Error)

    import numpy as np
    from sklearn import metrics
    y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
    y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
    print(np.sqrt(metrics.mean_squared_error(y_true, y_pred)))

    3、MAE (平均绝对误差)(Mean Absolute Error)

    import numpy as np
    from sklearn import metrics
    y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
    y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])
    print(metrics.mean_absolute_error(y_true, y_pred))

     

  • 相关阅读:
    css
    bootstrap
    在线小工具
    文档工具-Markdown
    js
    棋盘问题(深搜,统计)
    ****Curling 2.0(深搜+回溯)
    POJ 2676 Sudoku(深搜)
    POJ 2488 A Knight's Journey(深搜+回溯)
    ural 1104. Don’t Ask Woman about Her Age
  • 原文地址:https://www.cnblogs.com/gaona666/p/12302484.html
Copyright © 2011-2022 走看看