BERT的新语言表示模型,它代表Transformer的双向编码器表示。与最近的其他语言表示模型不同,BERT旨在通过联合调节所有层中的上下文来预先训练深度双向表示。因此,预训练的BERT表示可以通过一个额外的输出层进行微调(fine-tuning),适用于广泛任务的最先进模型的构建,比如问答任务和语言推理,无需针对具体任务做大幅架构修改。
一、BERT是如何进行预训练 pre-training的?
BERT 用了两个步骤,试图去正确地训练模型的参数。
1)第一个步骤是把一篇文章中,15% 的词汇遮盖,让模型根据上下文全向地预测被遮盖的词。假如有 1 万篇文章,每篇文章平均有 100 个词汇,随机遮盖 15% 的词汇,模型的任务是正确地预测这 15 万个被遮盖的词汇。通过全向预测被遮盖住的词汇,来初步训练 Transformer 模型的参数。
2)然后,用第二个步骤继续训练模型的参数。譬如从上述 1 万篇文章中,挑选 20 万对语句,总共 40 万条语句。挑选语句对的时候,其中 2*10 万对语句,是连续的两条上下文语句,另外 2*10 万对语句,不是连续的语句。然后让 Transformer 模型来识别这 20 万对语句,哪些是连续的,哪些不连续。
这两步训练合在一起,称为预训练 pre-training,训练结束后的Transformer模型,包括它的参数,就是论文期待的通用的语言表征模型。
二、BERT的bidirectional如何体现的?
论文研究团队有理由相信,深度双向模型比left-to-right 模型或left-to-right and right-to-left模型的浅层连接更强大。从中可以看出BERT的双向叫深度双向,不同于以往的双向理解,以往的双向是从左到右和从右到左结合,这种虽然看着是双向的,但是两个方向的loss计算相互独立,所以其实还是单向的,只不过简单融合了一下,而bert的双向是要同时看上下文语境的,所有不同。
为了训练一个深度双向表示(deep bidirectional representation),研究团队采用了一种简单的方法,即随机屏蔽(masking)部分输入token,然后只预测那些被屏蔽的token,(我理解这种情况下,模型如果想预测出这个masked的词,就必须结合上下文来预测,所以就达到了双向目的,有点类似于我们小学时候做的完形填空题目,你要填写对这个词,就必须结合上下文,BERT就是这个思路训练机器的,看来利用小学生的教学方式,有助于训练机器)。论文将这个过程称为“Masked Language Model”(MLM)。
Masked双向语言模型这么做:随机选择语料中15%的单词,把它抠掉,也就是用[Mask]掩码代替原始单词,然后要求模型去正确预测被抠掉的单词。但是这里有个问题:训练过程大量看到[mask]标记,但是真正后面用的时候是不会有这个标记的,这会引导模型认为输出是针对[mask]这个标记的,但是实际使用又见不到这个标记,这自然会有问题。为了避免这个问题,Bert改造了一下,15%的被上天选中要执行[mask]替身这项光荣任务的单词中,只有80%真正被替换成[mask]标记,10%被狸猫换太子随机替换成另外一个单词,10%情况这个单词还待在原地不做改动。这就是Masked双向语音模型的具体做法。
例如在这个句子“my dog is hairy”中,它选择的token是“hairy”。然后,执行以下过程:
数据生成器将执行以下操作,而不是始终用[MASK]替换所选单词:
80%的时间:用[MASK]标记替换单词,例如,my dog is hairy → my dog is [MASK]
10%的时间:用一个随机的单词替换该单词,例如,my dog is hairy → my dog is apple
10%的时间:保持单词不变,例如,my dog is hairy → my dog is hairy. 这样做的目的是将表示偏向于实际观察到的单词。
Transformer encoder不知道它将被要求预测哪些单词或哪些单词已被随机单词替换,因此它被迫保持每个输入token的分布式上下文表示。此外,因为随机替换只发生在所有token的1.5%(即15%的10%),这似乎不会损害模型的语言理解能力。
使用MLM的第二个缺点是每个batch只预测了15%的token,这表明模型可能需要更多的预训练步骤才能收敛。团队证明MLM的收敛速度略慢于 left-to-right的模型(预测每个token),但MLM模型在实验上获得的提升远远超过增加的训练成本。
三、语句对预测
至于说“Next Sentence Prediction”,指的是做语言模型预训练的时候,分两种情况选择两个句子,一种是选择语料中真正顺序相连的两个句子;另外一种是第二个句子从语料库中抛色子,随机选择一个拼到第一个句子后面。我们要求模型除了做上述的Masked语言模型任务外,附带再做个句子关系预测,判断第二个句子是不是真的是第一个句子的后续句子。之所以这么做,是考虑到很多NLP任务是句子关系判断任务,单词预测粒度的训练到不了句子关系这个层级,增加这个任务有助于下游句子关系判断任务。所以可以看到,它的预训练是个多任务过程。这也是Bert的一个创新。其实这个下一句的预测就变成了二分类问题了,如下:
四、BERT模型的影响
BERT是一个语言表征模型(language representation model),通过超大数据、巨大模型、和极大的计算开销训练而成,在11个自然语言处理的任务中取得了最优(state-of-the-art, SOTA)结果。或许你已经猜到了此模型出自何方,没错,它产自谷歌。估计不少人会调侃这种规模的实验已经基本让一般的实验室和研究员望尘莫及了,但它确实给我们提供了很多宝贵的经验:
深度学习就是表征学习 (Deep learning is representation learning):"We show that pre-trained representations eliminate the needs of many heavily engineered task-specific architectures". 在11项BERT刷出新境界的任务中,大多只在预训练表征(pre-trained representation)微调(fine-tuning)的基础上加一个线性层作为输出(linear output layer)。在序列标注的任务里(e.g. NER),甚至连序列输出的依赖关系都先不管(i.e. non-autoregressive and no CRF),照样秒杀之前的SOTA,可见其表征学习能力之强大。
规模很重要(Scale matters):"One of our core claims is that the deep bidirectionality of BERT, which is enabled by masked LM pre-training, is the single most important improvement of BERT compared to previous work". 这种遮挡(mask)在语言模型上的应用对很多人来说已经不新鲜了,但确是BERT的作者在如此超大规模的数据+模型+算力的基础上验证了其强大的表征学习能力。这样的模型,甚至可以延伸到很多其他的模型,可能之前都被不同的实验室提出和试验过,只是由于规模的局限没能充分挖掘这些模型的潜力,而遗憾地让它们被淹没在了滚滚的paper洪流之中。
预训练价值很大(Pre-training is important):"We believe that this is the first work to demonstrate that scaling to extreme model sizes also leads to large improvements on very small-scale tasks, provided that the model has been sufficiently pre-trained". 预训练已经被广泛应用在各个领域了(e.g. ImageNet for CV, Word2Vec in NLP),多是通过大模型大数据,这样的大模型给小规模任务能带来的提升有几何,作者也给出了自己的答案。BERT模型的预训练是用Transformer做的,但我想换做LSTM或者GRU的话应该不会有太大性能上的差别,当然训练计算时的并行能力就另当别论了。
五、BERT如何解决NLP的经典问题且使之通用呢?
NLP的四大任务,绝大部分NLP问题可以归入下面的四类任务中:
1)序列标注。这是最典型的NLP任务,比如中文分词,词性标注,命名实体识别,语义角色标注等都可以归入这一类问题,它的特点是句子中每个单词要求模型根据上下文都要给出一个分类类别。
2)分类任务。比如我们常见的文本分类,情感计算等都可以归入这一类。它的特点是不管文章有多长,总体给出一个分类类别即可。
3)任务是句子关系判断。比如Entailment,QA,语义改写,自然语言推理等任务都是这个模式,它的特点是给定两个句子,模型判断出两个句子是否具备某种语义关系;
4)生成式任务。比如机器翻译,文本摘要,写诗造句,看图说话等都属于这一类。它的特点是输入文本内容后,需要自主生成另外一段文字。
对于种类如此繁多而且各具特点的下游NLP任务,Bert如何改造输入输出部分使得大部分NLP任务都可以使用Bert预训练好的模型参数呢?
对于句子关系类任务,很简单,和GPT类似,加上一个起始和终结符号,句子之间加个分隔符即可。对于输出来说,把第一个起始符号对应的Transformer最后一层位置上面串接一个softmax分类层即可。
对于分类问题,与GPT一样,只需要增加起始和终结符号,输出部分和句子关系判断任务类似改造;
对于序列标注问题,输入部分和单句分类是一样的,只需要输出部分Transformer最后一层每个单词对应位置都进行分类即可。
从这里可以看出,上面列出的NLP四大任务里面,除了生成类任务外,Bert其它都覆盖到了,而且改造起来很简单直观。尽管Bert论文没有提,但是稍微动动脑子就可以想到,其实对于机器翻译或者文本摘要,聊天机器人这种生成式任务,同样可以稍作改造即可引入Bert的预训练成果。只需要附着在S2S结构上,encoder部分是个深度Transformer结构,decoder部分也是个深度Transformer结构。根据任务选择不同的预训练数据初始化encoder和decoder即可。这是相当直观的一种改造方法。当然,也可以更简单一点,比如直接在单个Transformer结构上加装隐层产生输出也是可以的。不论如何,从这里可以看出,NLP四大类任务都可以比较方便地改造成Bert能够接受的方式。这其实是Bert的非常大的优点,这意味着它几乎可以做任何NLP的下游任务,具备普适性,这是很强的。
六、预训练的本质。
我们应该弄清楚预训练这个过程本质上是在做什么事情,本质上预训练是通过设计好一个网络结构来做语言模型任务,然后把大量甚至是无穷尽的无标注的自然语言文本利用起来,预训练任务把大量语言学知识抽取出来编码到网络结构中,当手头任务带有标注信息的数据有限时,这些先验的语言学特征当然会对手头任务有极大的特征补充作用,因为当数据有限的时候,很多语言学现象是覆盖不到的,泛化能力就弱,集成尽量通用的语言学知识自然会加强模型的泛化能力。如何引入先验的语言学知识其实一直是NLP尤其是深度学习场景下的NLP的主要目标之一,不过一直没有太好的解决办法,而ELMO/GPT/Bert的这种两阶段模式看起来无疑是解决这个问题自然又简洁的方法,这也是这些方法的主要价值所在。