zoukankan      html  css  js  c++  java
  • Common Subsequence(dp)

    Common Subsequence

    Time Limit: 2 Sec  Memory Limit: 64 MB
    Submit: 951  Solved: 374

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <X1, x2, ..., xm>another sequence Z = <Z1, ..., z2, zk>is a subsequence of X if there exists a strictly increasing sequence <I1, ..., i2, ik>of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <A, b, f, c>is a subsequence of X = <A, b, f, c c,>with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.The length of the string is less than 1000.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp

    Sample Output

    4
    2
    0
     1 #include<stdio.h>
     2 #include<string.h>
     3 #define Max( a, b ) (a) > (b) ? (a) : (b)
     4 
     5 char s1[1005], s2[1005];
     6 
     7 int dp[1005][1005];
     8 
     9 int main()
    10 {
    11     int len1, len2;
    12     while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
    13     {
    14         memset( dp, 0, sizeof(dp) );
    15         len1 = strlen( s1+1 ), len2 = strlen( s2+1 );
    16         for( int i = 1; i <= len1; ++i )
    17         {
    18             for( int j = 1; j <= len2; ++j )
    19             {
    20                 if( s1[i] == s2[j] )
    21                 {
    22                     dp[i][j] = dp[i-1][j-1] + 1;
    23                 }
    24                 else
    25                 {
    26                     dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
    27                 }
    28             }
    29         }
    30         printf( "%d
    ", dp[len1][len2] );
    31     }
    32     return 0;
    33 }
    AC
  • 相关阅读:
    Springboot启动前执行方法
    UUID
    vue
    前端进阶
    动态代理
    c# 对接微信公众号JSSDK使用wx.uploadImage 上传图片,后台从微信服务器上下载的图片有问题损坏的解决办法
    浏览器数据库 IndexedDB基础使用
    使用Java命令行编译和打包jar
    ArcGIS JS API 路径回放
    基于Quick_SLPK_Server的NodeJs版I3S服务发布
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4198474.html
Copyright © 2011-2022 走看看