zoukankan      html  css  js  c++  java
  • Common Subsequence(dp)

    Common Subsequence

    Time Limit: 2 Sec  Memory Limit: 64 MB
    Submit: 951  Solved: 374

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <X1, x2, ..., xm>another sequence Z = <Z1, ..., z2, zk>is a subsequence of X if there exists a strictly increasing sequence <I1, ..., i2, ik>of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <A, b, f, c>is a subsequence of X = <A, b, f, c c,>with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.The length of the string is less than 1000.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp

    Sample Output

    4
    2
    0
     1 #include<stdio.h>
     2 #include<string.h>
     3 #define Max( a, b ) (a) > (b) ? (a) : (b)
     4 
     5 char s1[1005], s2[1005];
     6 
     7 int dp[1005][1005];
     8 
     9 int main()
    10 {
    11     int len1, len2;
    12     while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
    13     {
    14         memset( dp, 0, sizeof(dp) );
    15         len1 = strlen( s1+1 ), len2 = strlen( s2+1 );
    16         for( int i = 1; i <= len1; ++i )
    17         {
    18             for( int j = 1; j <= len2; ++j )
    19             {
    20                 if( s1[i] == s2[j] )
    21                 {
    22                     dp[i][j] = dp[i-1][j-1] + 1;
    23                 }
    24                 else
    25                 {
    26                     dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
    27                 }
    28             }
    29         }
    30         printf( "%d
    ", dp[len1][len2] );
    31     }
    32     return 0;
    33 }
    AC
  • 相关阅读:
    adb使用项目导入等
    ThreadLocal类理解
    Spring MVC MyBatis
    Spring MVC原理图
    Spring MVC返回JSON的几种方法
    Understanding REST
    链表
    存储构造题(Print Check)
    线状DP(石子归并)
    线段树(与区间有关的操作)
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4198474.html
Copyright © 2011-2022 走看看