zoukankan      html  css  js  c++  java
  • Common Subsequence(dp)

    Common Subsequence

    Time Limit: 2 Sec  Memory Limit: 64 MB
    Submit: 951  Solved: 374

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <X1, x2, ..., xm>another sequence Z = <Z1, ..., z2, zk>is a subsequence of X if there exists a strictly increasing sequence <I1, ..., i2, ik>of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <A, b, f, c>is a subsequence of X = <A, b, f, c c,>with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.The length of the string is less than 1000.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp

    Sample Output

    4
    2
    0
     1 #include<stdio.h>
     2 #include<string.h>
     3 #define Max( a, b ) (a) > (b) ? (a) : (b)
     4 
     5 char s1[1005], s2[1005];
     6 
     7 int dp[1005][1005];
     8 
     9 int main()
    10 {
    11     int len1, len2;
    12     while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
    13     {
    14         memset( dp, 0, sizeof(dp) );
    15         len1 = strlen( s1+1 ), len2 = strlen( s2+1 );
    16         for( int i = 1; i <= len1; ++i )
    17         {
    18             for( int j = 1; j <= len2; ++j )
    19             {
    20                 if( s1[i] == s2[j] )
    21                 {
    22                     dp[i][j] = dp[i-1][j-1] + 1;
    23                 }
    24                 else
    25                 {
    26                     dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
    27                 }
    28             }
    29         }
    30         printf( "%d
    ", dp[len1][len2] );
    31     }
    32     return 0;
    33 }
    AC
  • 相关阅读:
    汇编 if else
    汇编  cdecl 函数调用约定,stdcall 函数调用约定
    汇编 push ,pop指令
    汇编 EBP ,ESP 寄存器
    汇编 sub减法指令 比较指令CMP JZ条件跳转指令
    thrift使用案例
    基于hiredis,redis C客户端封装
    golang 3des/ecb/cbc/pkcs5 加解密
    ortp 发送RTP实例
    go:基于时间轮定时器方案
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4198474.html
Copyright © 2011-2022 走看看