zoukankan      html  css  js  c++  java
  • Common Subsequence(dp)

    Common Subsequence

    Time Limit: 2 Sec  Memory Limit: 64 MB
    Submit: 951  Solved: 374

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <X1, x2, ..., xm>another sequence Z = <Z1, ..., z2, zk>is a subsequence of X if there exists a strictly increasing sequence <I1, ..., i2, ik>of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <A, b, f, c>is a subsequence of X = <A, b, f, c c,>with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.The length of the string is less than 1000.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp

    Sample Output

    4
    2
    0
     1 #include<stdio.h>
     2 #include<string.h>
     3 #define Max( a, b ) (a) > (b) ? (a) : (b)
     4 
     5 char s1[1005], s2[1005];
     6 
     7 int dp[1005][1005];
     8 
     9 int main()
    10 {
    11     int len1, len2;
    12     while( scanf( "%s %s", s1+1, s2+1 ) != EOF )
    13     {
    14         memset( dp, 0, sizeof(dp) );
    15         len1 = strlen( s1+1 ), len2 = strlen( s2+1 );
    16         for( int i = 1; i <= len1; ++i )
    17         {
    18             for( int j = 1; j <= len2; ++j )
    19             {
    20                 if( s1[i] == s2[j] )
    21                 {
    22                     dp[i][j] = dp[i-1][j-1] + 1;
    23                 }
    24                 else
    25                 {
    26                     dp[i][j] = Max ( dp[i-1][j], dp[i][j-1] );
    27                 }
    28             }
    29         }
    30         printf( "%d
    ", dp[len1][len2] );
    31     }
    32     return 0;
    33 }
    AC
  • 相关阅读:
    一个较为健壮的下单方案
    [缓存]数据库事务环境下表级缓存的更新问题
    “Java是编译执行的语言”这句话对吗?
    分布式服务的幂等性设计
    [ java 工具类] xml字符串解析成Map(DOM解析)
    抽奖系统的流量削峰方案
    从一次线上故障思考Java问题定位思路
    关于JVM内存的N个问题
    Java多线程编程—锁优化
    Java锁机制(一)synchronized
  • 原文地址:https://www.cnblogs.com/get-an-AC-everyday/p/4198474.html
Copyright © 2011-2022 走看看