zoukankan      html  css  js  c++  java
  • AGC035F

    题目大意

    题解

    怎么又不是正解啊

    考虑算重的情况:

    有一个格子(i,j),(i,1..j)和(1..i-1,j)刚好被算了一次,横竖就可以在(i,j)上有两种放法

    硬点一下,当第i行选了ki时(i,ki +1)不能被竖列放,这样就不会算重

    把每一列的生成函数搞出来是这样:

    (A(x)=sum frac{n+1-i}{i!}x^i)

    最后(A(x)[x^i])表示有i行确定,那么就有n-i行刚好放了m(要除(n-i)!),所以答案就是

    (ans=sum A^m(x)[x^i]/(n-i)!)

    (A^m(x))可以快速幂求,但是(应该)过不了

    这个i!看着就很EGF,用泰勒公式搞♂一下

    泰勒公式:(e^x=1+x+frac{x^2}{2!}+frac{x^3}{3!}+...=sum frac{x^i}{i!})

    (A(x)=sum frac{n+1-i}{i!}x^i)

    (=sum frac{n+1}{i!}x^i-sum frac{i}{i!}x^i)

    (=(n+1)e^x-xsum_{i<n} frac{x^i}{i!})

    (=(n+1)e^x-xe^x)

    (=(n+1-x)e^x)

    那么(A^m(x))就是

    (A^m(x)=(n+1-x)^me^{mx})

    左边二项式展开,右边泰勒展开,卷一下即可

    简单又自然

    code

    #include <bits/stdc++.h>
    #define fo(a,b,c) for (a=b; a<=c; a++)
    #define fd(a,b,c) for (a=b; a>=c; a--)
    #define C(n,m) (jc[n]*Jc[m]%998244353*Jc[(n)-(m)]%998244353)
    #define min(a,b) (a<b?a:b)
    #define mod 998244353
    #define Mod 998244351
    #define ll long long
    #define G 3
    //#define file
    using namespace std;
    
    ll A[1048576],B[1048576],a[1048576],b[1048576],w[500001],jc[500001],Jc[500001],ans;
    int N,len,n,m,i,j,k,l;
    
    ll qpower(ll a,int b) {ll ans=1;while (b) {if (b&1) ans=ans*a%mod;a=a*a%mod;b>>=1;} return ans;}
    void swap(int &x,int &y) {int z=x;x=y;y=z;}
    ll dft(ll *a,int type)
    {
    	int i,j,k,l,S=N,s1=2,s2=1;
    	
    	fo(i,0,N-1)
    	{
    		j=i;k=0;
    		fo(l,1,len) k=k*2+(j&1),j>>=1;
    		A[k]=a[i];
    	}
    	memcpy(a,A,N*8);
    	
    	fo(i,1,len)
    	{
    		ll W=(type==1)?qpower(G,(mod-1)/s1):qpower(G,(mod-1)-(mod-1)/s1);
    		S>>=1;
    		
    		fo(j,0,S-1)
    		{
    			ll w=1;
    			fo(k,0,s2-1)
    			{
    				ll u=a[j*s1+k],v=a[j*s1+k+s2]*w;
    				a[j*s1+k]=(u+v)%mod;
    				a[j*s1+k+s2]=(u-v)%mod;
    				w=w*W%mod;
    			}
    		}
    		s1<<=1,s2<<=1;
    	}
    }
    
    void mul(ll *a,ll *b)
    {
    	ll s=qpower(N,Mod);
    	int i;
    	
    	memset(B,0,sizeof(B));
    	memcpy(B,b,4*N);
    	dft(a,1);
    	dft(B,1);
    	fo(i,0,N-1) a[i]=a[i]*B[i]%mod;
    	dft(a,-1);
    	fo(i,0,N/2-1) a[i]=a[i]*s%mod;
    	fo(i,N/2,N-1) a[i]=0;
    }
    
    int main()
    {
    	#ifdef file
    	freopen("agc035F.in","r",stdin);
    	#endif
    	
    	scanf("%d%d",&n,&m);len=ceil(log2(n+1))+1;N=qpower(2,len);
    	if (n>m) swap(n,m);
    	jc[0]=jc[1]=Jc[0]=Jc[1]=w[1]=1;fo(i,2,500000) w[i]=mod-w[mod%i]*(mod/i)%mod,jc[i]=jc[i-1]*i%mod,Jc[i]=Jc[i-1]*w[i]%mod;
    	
    	fo(i,0,n) a[i]=qpower(n+1,m-i)*C(m,i)*qpower(-1,i)%mod; //or min(n,m)
    	fo(i,0,n) b[i]=qpower(m,i)*Jc[i]%mod;
    	mul(a,b);
    	
    	fo(i,0,n) ans=(ans+Jc[n-i]*a[i])%mod;
    	fo(i,1,n) ans=ans*i%mod;
    	printf("%lld
    ",(ans+mod)%mod);
    	
    	fclose(stdin);
    	fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    Poj 3177 Redundant Paths (双连通分支+节点统计)
    Uva 796 Critical Links (割边+排序)
    Lightoj 1020
    Flip Game---poj1753(状压+bfs)
    Best Cow Line---poj3617(贪心)
    滑雪---poj1088(动态规划+记忆化搜索)
    King's Quest---poj1904(连通图缩点)
    Steady Cow Assignment---poj3189(多重匹配+二分)
    B. Berland National Library---cf567B(set|模拟)
    HDU Today---hdu2112(最短路-_-坑在是无向图)
  • 原文地址:https://www.cnblogs.com/gmh77/p/12834532.html
Copyright © 2011-2022 走看看