zoukankan      html  css  js  c++  java
  • 327. Count of Range Sum(inplace_marge)

    Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.
    Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.

    Note:
    A naive algorithm of O(n2) is trivial. You MUST do better than that.

    Example:

    Input: nums = [2, 5, -1], lower = -2, upper = 2,
    Output: 3 
    Explanation: The three ranges are : [0, 0], [2, 2], [0, 2] and their respective sums are: -2, -1, 2.
    
     

    Approach #1: C++.

    class Solution {
    public:
        int countRangeSum(vector<int>& nums, int lower, int upper) {
            int len = nums.size();
            if (len == 0) return 0;
            vector<long> sum(len+1, 0);
            for (int i = 0; i < len; ++i)
                sum[i+1] += sum[i] + nums[i];
            return mergeSort(sum, lower, upper, 0, len+1);
        }
        
    private:
        int mergeSort(vector<long>& sum, int lower, int upper, int left, int right) {
            if (right - left <= 1) return 0;
            int mid = left + (right - left) / 2;
            int m = mid, n = mid, count = 0;
            count = mergeSort(sum, lower, upper, left, mid) + mergeSort(sum, lower, upper, mid, right);
            for (int i = left; i < mid; ++i) {
                while (m < right && sum[m] - sum[i] < lower) m++;
                while (n < right && sum[n] - sum[i] <= upper) n++;
                count += n - m;
            }
            inplace_merge(sum.begin()+left, sum.begin()+mid, sum.begin()+right);
            return count;
        }
    };
    

      

    Approach #2: Java.

    class Solution {
        public int countRangeSum(int[] nums, int lower, int upper) {
            if (nums == null || nums.length == 0) return 0;
            long[] sums = new long[nums.length];
            long sum = 0;
            for (int i = 0; i < nums.length; ++i) {
                sum += nums[i];
                sums[i] += sum;
            }
            return mergeSort(sums, lower, upper, 0, nums.length-1);
        }
        
        private int mergeSort(long[] sums, int lower, int upper, int left, int right) {
            if (right < left) return 0;
            else if (left == right) {
                if (sums[left] >= lower && sums[right] <= upper) return 1;
                else return 0;
            }
            int mid = left + (right - left) / 2;
            int count = mergeSort(sums, lower, upper, left, mid) + mergeSort(sums, lower, upper, mid+1, right);
            int m = mid+1, n = mid+1;
            for (int i = left; i <= mid; ++i) {
                while (m <= right && sums[m] - sums[i] < lower) m++;
                while (n <= right && sums[n] - sums[i] <= upper) n++;
                count += n - m;
            }
            mergeHelper(sums, left, mid, right);
            return count;
        }
        
        private void mergeHelper(long[] sums, int left, int mid, int right) {
            int i = left;
            int j = mid + 1;
            long[] copy = new long[right-left+1];
            int p = 0;
            while (i <= mid && j <= right) {
                if (sums[i] < sums[j]) {
                    copy[p++] = sums[i++];
                } else {
                    copy[p++] = sums[j++];
                }
            }
            
            while (i <= mid) {
                copy[p++] = sums[i++];
            }
            
            while (j <= right) {
                copy[p++] = sums[j++];
            }
            
            System.arraycopy(copy, 0, sums, left, right-left+1);
        }
    }
    

      

    Approach #3: Python.

    class Solution(object):
        def countRangeSum(self, nums, lower, upper):
            """
            :type nums: List[int]
            :type lower: int
            :type upper: int
            :rtype: int
            """
            first = [0]
            for num in nums:
                first.append(first[-1] + num)
                
            def sort(lo, hi):
                mid = (lo + hi) / 2
                if mid == lo:
                    return 0
                count = sort(lo, mid) + sort(mid, hi)
                i = j = mid
                for left in first[lo:mid]:
                    while i < hi and first[i] - left < lower: i += 1
                    while j < hi and first[j] - left <= upper: j += 1
                    count += j - i
                first[lo:hi] = sorted(first[lo:hi])
                return count
            return sort(0, len(first))
    

      

    Notes:

    C++ -----> inplace_merge

    default (1)
    template <class BidirectionalIterator>
      void inplace_merge (BidirectionalIterator first, BidirectionalIterator middle,
                          BidirectionalIterator last);
    
    custom (2)
    template <class BidirectionalIterator, class Compare>
      void inplace_merge (BidirectionalIterator first, BidirectionalIterator middle,
                          BidirectionalIterator last, Compare comp);
    Merge consecutive sorted ranges

    Merges two consecutive sorted ranges: [first,middle) and [middle,last), putting the result into the combined sorted range [first,last).

    The elements are compared using operator< for the first version, and comp for the second. The elements in both ranges shall already be ordered according to this same criterion (operator< or comp). The resulting range is also sorted according to this.

    The function preserves the relative order of elements with equivalent values, with the elements in the first range preceding those equivalent in the second.

    for example:

    // inplace_merge example
    #include <iostream>     // std::cout
    #include <algorithm>    // std::inplace_merge, std::sort, std::copy
    #include <vector>       // std::vector
    
    int main () {
      int first[] = {5,10,15,20,25};
      int second[] = {50,40,30,20,10};
      std::vector<int> v(10);
      std::vector<int>::iterator it;
    
      std::sort (first,first+5);
      std::sort (second,second+5);
    
      it=std::copy (first, first+5, v.begin());
         std::copy (second,second+5,it);
    
      std::inplace_merge (v.begin(),v.begin()+5,v.end());
    
      std::cout << "The resulting vector contains:";
      for (it=v.begin(); it!=v.end(); ++it)
        std::cout << ' ' << *it;
      std::cout << '
    ';
    
      return 0;
    }
    

      

    output:

    The resulting vector contains: 5 10 10 15 20 20 25 30 40 50
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    CSS盒子模型
    CSS
    html基础
    浅谈三层架构
    mysql更改表结构:添加、删除、修改字段、调整字段顺序
    类的高级概念
    无锁版以时间为GUID的方法
    以当前时间作为GUID的方法
    关于客户定制化软件的探讨
    关于敏捷的一点想法
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10040903.html
Copyright © 2011-2022 走看看