zoukankan      html  css  js  c++  java
  • 327. Count of Range Sum(inplace_marge)

    Given an integer array nums, return the number of range sums that lie in [lower, upper] inclusive.
    Range sum S(i, j) is defined as the sum of the elements in nums between indices i and j (i ≤ j), inclusive.

    Note:
    A naive algorithm of O(n2) is trivial. You MUST do better than that.

    Example:

    Input: nums = [2, 5, -1], lower = -2, upper = 2,
    Output: 3 
    Explanation: The three ranges are : [0, 0], [2, 2], [0, 2] and their respective sums are: -2, -1, 2.
    
     

    Approach #1: C++.

    class Solution {
    public:
        int countRangeSum(vector<int>& nums, int lower, int upper) {
            int len = nums.size();
            if (len == 0) return 0;
            vector<long> sum(len+1, 0);
            for (int i = 0; i < len; ++i)
                sum[i+1] += sum[i] + nums[i];
            return mergeSort(sum, lower, upper, 0, len+1);
        }
        
    private:
        int mergeSort(vector<long>& sum, int lower, int upper, int left, int right) {
            if (right - left <= 1) return 0;
            int mid = left + (right - left) / 2;
            int m = mid, n = mid, count = 0;
            count = mergeSort(sum, lower, upper, left, mid) + mergeSort(sum, lower, upper, mid, right);
            for (int i = left; i < mid; ++i) {
                while (m < right && sum[m] - sum[i] < lower) m++;
                while (n < right && sum[n] - sum[i] <= upper) n++;
                count += n - m;
            }
            inplace_merge(sum.begin()+left, sum.begin()+mid, sum.begin()+right);
            return count;
        }
    };
    

      

    Approach #2: Java.

    class Solution {
        public int countRangeSum(int[] nums, int lower, int upper) {
            if (nums == null || nums.length == 0) return 0;
            long[] sums = new long[nums.length];
            long sum = 0;
            for (int i = 0; i < nums.length; ++i) {
                sum += nums[i];
                sums[i] += sum;
            }
            return mergeSort(sums, lower, upper, 0, nums.length-1);
        }
        
        private int mergeSort(long[] sums, int lower, int upper, int left, int right) {
            if (right < left) return 0;
            else if (left == right) {
                if (sums[left] >= lower && sums[right] <= upper) return 1;
                else return 0;
            }
            int mid = left + (right - left) / 2;
            int count = mergeSort(sums, lower, upper, left, mid) + mergeSort(sums, lower, upper, mid+1, right);
            int m = mid+1, n = mid+1;
            for (int i = left; i <= mid; ++i) {
                while (m <= right && sums[m] - sums[i] < lower) m++;
                while (n <= right && sums[n] - sums[i] <= upper) n++;
                count += n - m;
            }
            mergeHelper(sums, left, mid, right);
            return count;
        }
        
        private void mergeHelper(long[] sums, int left, int mid, int right) {
            int i = left;
            int j = mid + 1;
            long[] copy = new long[right-left+1];
            int p = 0;
            while (i <= mid && j <= right) {
                if (sums[i] < sums[j]) {
                    copy[p++] = sums[i++];
                } else {
                    copy[p++] = sums[j++];
                }
            }
            
            while (i <= mid) {
                copy[p++] = sums[i++];
            }
            
            while (j <= right) {
                copy[p++] = sums[j++];
            }
            
            System.arraycopy(copy, 0, sums, left, right-left+1);
        }
    }
    

      

    Approach #3: Python.

    class Solution(object):
        def countRangeSum(self, nums, lower, upper):
            """
            :type nums: List[int]
            :type lower: int
            :type upper: int
            :rtype: int
            """
            first = [0]
            for num in nums:
                first.append(first[-1] + num)
                
            def sort(lo, hi):
                mid = (lo + hi) / 2
                if mid == lo:
                    return 0
                count = sort(lo, mid) + sort(mid, hi)
                i = j = mid
                for left in first[lo:mid]:
                    while i < hi and first[i] - left < lower: i += 1
                    while j < hi and first[j] - left <= upper: j += 1
                    count += j - i
                first[lo:hi] = sorted(first[lo:hi])
                return count
            return sort(0, len(first))
    

      

    Notes:

    C++ -----> inplace_merge

    default (1)
    template <class BidirectionalIterator>
      void inplace_merge (BidirectionalIterator first, BidirectionalIterator middle,
                          BidirectionalIterator last);
    
    custom (2)
    template <class BidirectionalIterator, class Compare>
      void inplace_merge (BidirectionalIterator first, BidirectionalIterator middle,
                          BidirectionalIterator last, Compare comp);
    Merge consecutive sorted ranges

    Merges two consecutive sorted ranges: [first,middle) and [middle,last), putting the result into the combined sorted range [first,last).

    The elements are compared using operator< for the first version, and comp for the second. The elements in both ranges shall already be ordered according to this same criterion (operator< or comp). The resulting range is also sorted according to this.

    The function preserves the relative order of elements with equivalent values, with the elements in the first range preceding those equivalent in the second.

    for example:

    // inplace_merge example
    #include <iostream>     // std::cout
    #include <algorithm>    // std::inplace_merge, std::sort, std::copy
    #include <vector>       // std::vector
    
    int main () {
      int first[] = {5,10,15,20,25};
      int second[] = {50,40,30,20,10};
      std::vector<int> v(10);
      std::vector<int>::iterator it;
    
      std::sort (first,first+5);
      std::sort (second,second+5);
    
      it=std::copy (first, first+5, v.begin());
         std::copy (second,second+5,it);
    
      std::inplace_merge (v.begin(),v.begin()+5,v.end());
    
      std::cout << "The resulting vector contains:";
      for (it=v.begin(); it!=v.end(); ++it)
        std::cout << ' ' << *it;
      std::cout << '
    ';
    
      return 0;
    }
    

      

    output:

    The resulting vector contains: 5 10 10 15 20 20 25 30 40 50
    

      

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    20162328蔡文琛 四则运算第一周
    实验三:实验报告
    20162328蔡文琛week09
    20162328蔡文琛week08
    20162328蔡文琛week07
    实验报告二
    20162312张家铖 10.9查找课堂测试
    20162312实验一
    # 20162312 2017-2018-3 《程序设计与数据结构》第3周学习总结
    # 20162312 2017-2018-1 《程序设计与数据结构》第1周学习总结
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10040903.html
Copyright © 2011-2022 走看看