zoukankan      html  css  js  c++  java
  • 207. Course Schedule

    There are a total of n courses you have to take, labeled from 0 to n-1.

    Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

    Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

    Example 1:

    Input: 2, [[1,0]] 
    Output: true
    Explanation: There are a total of 2 courses to take. 
                 To take course 1 you should have finished course 0. So it is possible.

    Example 2:

    Input: 2, [[1,0],[0,1]]
    Output: false
    Explanation: There are a total of 2 courses to take. 
                 To take course 1 you should have finished course 0, and to take course 0 you should
                 also have finished course 1. So it is impossible.
    

    Note:

    1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
    2. You may assume that there are no duplicate edges in the input prerequisites.
     

    Approach #2: C++. [graph + dfs]

    class Solution {
    public:
        bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
            // states: 0: not visit     1: visiting     2: visited
            vector<int> node(numCourses, 0);
            graph = vector<vector<int>>(numCourses);
            
            for (auto prerequisite : prerequisites) {
                graph[prerequisite.second].push_back(prerequisite.first);
            }
            
            for (int i = 0; i < numCourses; ++i) {
                if (dfs(node, i)) return false;
            }
            
            return true;
        }
    private:
        vector<vector<int>> graph;
        
        bool dfs(vector<int>& node, int cur) {
            if (node[cur] == 1) return true;
            if (node[cur] == 2) return false;
            
            node[cur] = 1;
            
            for (auto k : graph[cur]) {
                if (dfs(node, k)) return true;
            }
            
            node[cur] = 2;
            return false;
        }
    };
    

      

    Approach #2: Java. [BFS]

    class Solution {
        public boolean canFinish(int numCourses, int[][] prerequisites) {
            ArrayList[] graph = new ArrayList[numCourses];
            int[] degree = new int[numCourses];
            Queue queue = new LinkedList();
            int count = 0;
            
            for (int i = 0; i < numCourses; ++i) {
                graph[i] = new ArrayList();
            }
            
            for (int i = 0; i < prerequisites.length; ++i) {
                degree[prerequisites[i][1]]++;
                graph[prerequisites[i][0]].add(prerequisites[i][1]);
            }
            
            for (int i = 0; i < degree.length; ++i) {
                if (degree[i] == 0) {
                    queue.add(i);
                    count++;
                }
            }
            
            while (queue.size() != 0) {
                int course = (int)queue.poll();
                for (int i = 0; i < graph[course].size(); ++i) {
                    int pointer = (int)graph[course].get(i);
                    degree[pointer]--;
                    if (degree[pointer] == 0) {
                        queue.add(pointer);
                        count++;
                    }
                }
            }
            
            if (count == numCourses) return true;
            else return false;
        }
    }
    

      

    Approach #3: Python.

    class Solution(object):
        def canFinish(self, n, pres):
            """
            :type numCourses: int
            :type prerequisites: List[List[int]]
            :rtype: bool
            """
            from collections import deque
            ind = [[] for _ in xrange(n)]
            oud = [0] * n
            for p in pres:
                oud[p[0]] += 1
                ind[p[1]].append(p[0])
            dq = deque()
            
            for i in xrange(n):
                if oud[i] == 0:
                    dq.append(i)
            
            k = 0
            
            while dq:
                x = dq.popleft()
                k += 1
                for i in ind[x]:
                    oud[i] -= 1
                    if oud[i] == 0:
                        dq.append(i)
                        
            return k == n
    

      

    Analysis:

    At the first, we initialize each node with 0(the state represent that this node haven't visited). and we use a two-dimensional vector to store the linked node. graph[a].push_back(b) represent that a is the prerequisites of b.

    for every number from 0 to n-1 it will have some (or not) prerequisites int the vector of graph[i]. We travel the elements in graph[i] if there is a node which is visiting (which node state is 2), so we can know there is a circle and it will return false in the answer.

    In the processing, If the node equal to 1(which reperesent this node has been visited, in other word it's prerequisites has been satisfied).

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    Mr. Frog’s Game(模拟连连看)
    Comparison of Android versions(strcmp的应用)
    Android热门网络框架Volley详解
    Android中你应该知道的设计模式
    从高德 SDK 学习 Android 动态加载资源
    Android中多线程下载列表的封装实现(含进度反馈)
    判断App是否在后台运行
    信息安全领域有哪些非常棒的资源?
    Android应用发布后的统计——百度移动统计的应用
    面试时,问哪些问题能试出一个Android应用开发者真正的水平?
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10116574.html
Copyright © 2011-2022 走看看