zoukankan      html  css  js  c++  java
  • caffe中的lr_policy

    // The learning rate decay policy. The currently implemented learning rate  
    // policies are as follows:  
    //    - fixed: always return base_lr.  
    //    - step: return base_lr * gamma ^ (floor(iter / step))  
    //    - exp: return base_lr * gamma ^ iter  
    //    - inv: return base_lr * (1 + gamma * iter) ^ (- power)  
    //    - multistep: similar to step but it allows non uniform steps defined by  
    //      stepvalue  
    //    - poly: the effective learning rate follows a polynomial decay, to be  
    //      zero by the max_iter. return base_lr (1 - iter/max_iter) ^ (power)  
    //    - sigmoid: the effective learning rate follows a sigmod decay  
    //      return base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))  
    //  
    // where base_lr, max_iter, gamma, step, stepvalue and power are defined  
    // in the solver parameter protocol buffer, and iter is the current iteration. 
  • 相关阅读:
    boostrapvalidator
    bootstrap 整理
    emil 的使用
    sass笔记
    sql 语句的优化
    多线程笔记
    mysql笔记
    react
    优雅的创建map/list集合
    spring中路径的注入
  • 原文地址:https://www.cnblogs.com/haiyang21/p/7512266.html
Copyright © 2011-2022 走看看