zoukankan      html  css  js  c++  java
  • Seaborn实现单变量分析

    import numpy as np
    import pandas as pd
    from scipy import stats,integrate
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    # # 绘制直方图
    # sns.set(color_codes=True)
    # np.random.seed(sum(map(ord,"distributions")))
    # # 生成高斯数据
    # x = np.random.normal(size = 100)
    # #
    # # sns.distplot(x,kde = False)
    # #  x 数据   kde 是否做密度估计
    # #  将数据划分为 15 份 bins = 15
    # sns.distplot(x,kde = False,bins = 15)
    # plt.show()
    
    # # 查看数据分布状况,根据某一个指标画一条线
    # x = np.random.gamma(6,size = 200)
    # sns.distplot(x,kde = False,fit = stats.gamma)
    # plt.show()
    
    # mean,cov = [0,1],[(1,5),(0.5,1)]
    # data = np.random.multivariate_normal(mean,cov,200)
    # df = pd.DataFrame(data,columns=["x","y"])
    
    # # 单变量使用直方图,关系使用散点图
    # 关系 joinplot (x,y,data)
    # sns.jointplot(x = "x",y = "y",data = df)
    # # 绘制散点图和直方图
    # plt.show()
    
    # # hex 图,数据越多 色越深
    # mean,cov = [0,1],[(1,8),(0.5,1)]
    # x,y = np.random.multivariate_normal(mean,cov,500).T
    # # 注意 .T 进行倒置
    # with sns.axes_style("white"):
    #     sns.jointplot(x = x,y = y,kind = "hex",color = "k")
    # plt.show()

    2020-04-24

  • 相关阅读:
    洛谷P2875 [USACO07FEB]牛的词汇The Cow Lexicon
    poj2241 The Tower of Babylon
    2015 Noip提高组 Day2
    2015 Noip提高组 Day1
    poj3252 Round Numbers
    hdu4734 F(x)
    hdu2089 不要62
    洛谷P1831 杠杆数
    洛谷P2113 看球泡妹子
    洛谷P3110 [USACO14DEC]驮运Piggy Back
  • 原文地址:https://www.cnblogs.com/hany-postq473111315/p/12766032.html
Copyright © 2011-2022 走看看