zoukankan      html  css  js  c++  java
  • Restoring Road Network

    D - Restoring Road Network


    Time limit : 2sec / Memory limit : 256MB

    Score : 500 points

    Problem Statement

    In Takahashi Kingdom, which once existed, there are N cities, and some pairs of cities are connected bidirectionally by roads. The following are known about the road network:

    • People traveled between cities only through roads. It was possible to reach any city from any other city, via intermediate cities if necessary.
    • Different roads may have had different lengths, but all the lengths were positive integers.

    Snuke the archeologist found a table with N rows and N columns, A, in the ruin of Takahashi Kingdom. He thought that it represented the shortest distances between the cities along the roads in the kingdom.

    Determine whether there exists a road network such that for each u and v, the integer Au,v at the u-th row and v-th column of A is equal to the length of the shortest path from City u to City v. If such a network exist, find the shortest possible total length of the roads.

    Constraints

    • 1≤N≤300
    • If ij1≤Ai,j=Aj,i≤109.
    • Ai,i=0

    Inputs

    Input is given from Standard Input in the following format:

    N
    A1,1 A1,2  A1,N
    A2,1 A2,2  A2,N
    
    AN,1 AN,2  AN,N
    

    Outputs

    If there exists no network that satisfies the condition, print -1. If it exists, print the shortest possible total length of the roads.


    Sample Input 1

    Copy
    3
    0 1 3
    1 0 2
    3 2 0
    

    Sample Output 1

    Copy
    3
    

    The network below satisfies the condition:

    • City 1 and City 2 is connected by a road of length 1.
    • City 2 and City 3 is connected by a road of length 2.
    • City 3 and City 1 is not connected by a road.

    Sample Input 2

    Copy
    3
    0 1 3
    1 0 1
    3 1 0
    

    Sample Output 2

    Copy
    -1
    

    As there is a path of length 1 from City 1 to City 2 and City 2 to City 3, there is a path of length 2 from City 1 to City 3. However, according to the table, the shortest distance between City 1 and City 3 must be 3.

    Thus, we conclude that there exists no network that satisfies the condition.


    Sample Input 3

    Copy
    5
    0 21 18 11 28
    21 0 13 10 26
    18 13 0 23 13
    11 10 23 0 17
    28 26 13 17 0
    

    Sample Output 3

    Copy
    82
    

    Sample Input 4

    Copy
    3
    0 1000000000 1000000000
    1000000000 0 1000000000
    1000000000 1000000000 0
    

    Sample Output 4

    Copy

    3000000000

    //题意:给出一个 n * n 的最短路表,问此表需要最少连通多少边多少才能实现。、

    //显然,对于每对点都要考虑,如果,可以通过第三方点实现,就用第三方,否则,只能连本身的边

     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 #define LL long long
     4 #define eps 1e-8
     5 #define MX 305
     6 
     7 int n;
     8 int G[MX][MX];
     9 
    10 int main()
    11 {
    12     while (scanf("%d",&n)!=EOF)
    13     {
    14         for (int i=1;i<=n;i++)
    15             for (int j=1;j<=n;j++)
    16                 scanf("%d",&G[i][j]);
    17         LL ans =0;
    18         bool ok=1;
    19         for (int i=1;i<=n;i++)
    20         {
    21             for (int j=1;j<=n;j++)
    22             {
    23                 if (i==j) continue;
    24                 bool need=1;
    25                 for (int k=1;k<=n;k++)
    26                 {
    27                     if (k==i||k==j) continue;
    28                     if (G[i][j]>G[i][k]+G[k][j])  ok=0;
    29                     if (G[i][j]==G[i][k]+G[k][j]) need=0;
    30                 }
    31                 if (need) ans+=G[i][j];
    32             }
    33         }
    34         if (ok) printf("%lld
    ",ans/2);
    35         else printf("-1
    ");
    36     }
    37     return 0;
    38 }
    View Code
  • 相关阅读:
    docker指令汇总
    springboot(八) 嵌入式Servlet容器自动配置原理和容器启动原理
    RabbitMQ 消息确认机制
    RabbitMQ 最常用的三大模式
    RabbitMQ 核心概念
    RabbitMQ 之简单队列
    Spring 详解(三)------- SpringMVC拦截器使用
    slf4j 搭配 log4j2 处理日志
    Spring 详解(二)------- AOP关键概念以及两种实现方式
    Spring 详解(一)------- AOP前序
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/7537727.html
Copyright © 2011-2022 走看看