zoukankan      html  css  js  c++  java
  • 【CF613D】Kingdom and its Cities

    【CF613D】Kingdom and its Cities

    题面

    洛谷

    题解

    看到关键点当然是建虚树啦。

    (f[x])表示以(x)为根的子树的答案,(g[x])表示以(x)为根的子树内是否有(x)联通的点,(c=sum_{vin son_x} g[v])

    分类讨论一下:

    • 如果一个点在原树下它和它的父亲均为关键点,那么显然不行。
    • 这个点是关键点,(f[x]+=c)(g[x]=1)
    • 这个点不是关键点,若(c>1)则断掉这个点,(++f[x],g[x]=0),否则(g[x]=1)

    这题就做(v.a.n)啦。

    代码

    #include <iostream> 
    #include <cstdio> 
    #include <cstdlib> 
    #include <cstring> 
    #include <cmath> 
    #include <algorithm> 
    using namespace std; 
    inline int gi() { 
        register int data = 0, w = 1; 
        register char ch = 0; 
        while (!isdigit(ch) && ch != '-') ch = getchar(); 
        if (ch == '-') w = -1, ch = getchar(); 
        while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
        return w * data; 
    } 
    const int MAX_N = 1e5 + 5; 
    struct Graph { int to, next; } e[MAX_N << 1];
    int fir1[MAX_N], fir2[MAX_N], e_cnt; 
    void clearGraph() {
    	memset(fir1, -1, sizeof(fir1)); 
    	memset(fir2, -1, sizeof(fir2)); 
    } 
    void Add_Edge(int *fir, int u, int v) { 
    	e[e_cnt] = (Graph){v, fir[u]}; 
    	fir[u] = e_cnt++; 
    }
    namespace Tree { 
        int fa[MAX_N], dep[MAX_N], size[MAX_N], top[MAX_N], son[MAX_N], dfn[MAX_N], tim; 
        void dfs1(int x) { 
            dfn[x] = ++tim; 
            size[x] = 1, dep[x] = dep[fa[x]] + 1; 
            for (int i = fir1[x]; ~i; i = e[i].next) {
                int v = e[i].to; if (v == fa[x]) continue; 
                fa[v] = x; dfs1(v); size[x] += size[v]; 
                if (size[v] > size[son[x]]) son[x] = v; 
            } 
        } 
        void dfs2(int x, int tp) {
            top[x] = tp; 
            if (son[x]) dfs2(son[x], tp); 
            for (int i = fir1[x]; ~i; i = e[i].next) {
                int v = e[i].to; if (v == fa[x] || v == son[x]) continue; 
                dfs2(v, v); 
            } 
        } 
        int LCA(int x, int y) { 
            while (top[x] != top[y]) { 
                if (dep[top[x]] < dep[top[y]]) swap(x, y); 
                x = fa[top[x]]; 
            } 
            return dep[x] < dep[y] ? x : y; 
        } 
    }
    using Tree::dfn; using Tree::LCA; 
    int N, M, K, a[MAX_N], f[MAX_N];
    bool g[MAX_N], key[MAX_N]; 
    bool cmp(const int &i, const int &j) { return dfn[i] < dfn[j]; } 
    void build() {
    	static int stk[MAX_N], top;
    	e_cnt = 0; top = 0; 
    	sort(&a[1], &a[K + 1], cmp); 
    	for (int i = 1; i <= K; i++) if (a[i] != a[i - 1]) stk[++top] = a[i];
    	K = top; 
    	for (int i = 1; i <= K; i++) a[i] = stk[i]; 
    	stk[top = 1] = 1, fir2[1] = -1; 
    	for (int i = 1; i <= K; i++) { 
    		if (a[i] == 1) continue;
    	    int lca = LCA(a[i], stk[top]);
    		if (lca != stk[top]) { 
    			while (dfn[lca] < dfn[stk[top - 1]]) { 
    				int u = stk[top], v = stk[top - 1]; 
    				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
    				--top; 
    			} 
    			if (dfn[lca] > dfn[stk[top - 1]]) { 
    				fir2[lca] = -1; int u = lca, v = stk[top];
    				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u);
    				stk[top] = lca; 
    			} else { 
    				int u = lca, v = stk[top--]; 
    				Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
    			} 
    		} 
    		fir2[a[i]] = -1, stk[++top] = a[i]; 
    	} 
    	for (int i = 1; i < top; i++) {
    		int u = stk[i], v = stk[i + 1]; 
    		Add_Edge(fir2, u, v), Add_Edge(fir2, v, u); 
    	} 
    } 
    void Dp(int x, int fa) { 
    	f[x] = g[x] = 0; 
    	int c = 0; 
    	for (int i = fir2[x]; ~i; i = e[i].next) { 
    		int v = e[i].to; if (v == fa) continue; 
    		Dp(v, x); 
    		f[x] += f[v], c += g[v]; 
    	} 
    	if (key[x]) g[x] = 1, f[x] += c; 
    	else if (c > 1) g[x] = 0, ++f[x]; 
    	else g[x] = c; 
    } 
    int main () { 
    #ifndef ONLINE_JUDGE 
        freopen("cpp.in", "r", stdin); 
    #endif
    	clearGraph(); 
    	N = gi();
    	for (int i = 1; i < N; i++) { 
    		int u = gi(), v = gi(); 
    		Add_Edge(fir1, u, v), Add_Edge(fir1, v, u); 
    	}
    	Tree::dfs1(1), Tree::dfs2(1, 1); 
    	M = gi(); 
    	while (M--) {
    		K = gi(); for (int i = 1; i <= K; i++) key[a[i] = gi()] = 1;
    		bool flg = 1; 
    		for (int i = 1; i <= K && flg; i++) if (key[Tree::fa[a[i]]]) flg = 0; 
    		if (!flg) { puts("-1"); goto NXT; } 
    		build(); 
    		Dp(1, 0); 
    		printf("%d
    ", f[1]); 
    	  NXT : 
    		for (int i = 1; i <= K; i++) key[a[i]] = 0; 
    	} 
    	return 0; 
    } 
    
  • 相关阅读:
    说说VNode节点(Vue.js实现)
    从Vue.js源码角度再看数据绑定
    《Cloud Native Infrastructure》CHAPTER 7(3)
    《Cloud Native Infrastructure》CHAPTER 7(2)
    《Cloud Native Infrastructure》CHAPTER 7 (1)
    《Cloud Native Infrastructure》CHAPTER 4(2)
    《Cloud Native Infrastructure》CHAPTER 4(1)
    《Cloud Native Infrastructure》CHAPTER 2(1)
    《Cloud Native Infrastructure》CHAPTER 1(2)
    《Cloud Native Infrastructure》CHAPTER 1(1)
  • 原文地址:https://www.cnblogs.com/heyujun/p/10360273.html
Copyright © 2011-2022 走看看