zoukankan      html  css  js  c++  java
  • HDU 6156 数位dp

    Palindrome Function

    Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 256000/256000 K (Java/Others)
    Total Submission(s): 863    Accepted Submission(s): 476


    Problem Description
    As we all know,a palindrome number is the number which reads the same backward as forward,such as 666 or 747.Some numbers are not the palindrome numbers in decimal form,but in other base,they may become the palindrome number.Like 288,it’s not a palindrome number under 10-base.But if we convert it to 17-base number,it’s GG,which becomes a palindrome number.So we define an interesting function f(n,k) as follow:
    f(n,k)=k if n is a palindrome number under k-base.
    Otherwise f(n,k)=1.
    Now given you 4 integers L,R,l,r,you need to caluclate the mathematics expression Ri=Lrj=lf(i,j) .
    When representing the k-base(k>10) number,we need to use A to represent 10,B to represent 11,C to repesent 12 and so on.The biggest number is Z(35),so we only discuss about the situation at most 36-base number.
     
    Input
    The first line consists of an integer T,which denotes the number of test cases.
    In the following T lines,each line consists of 4 integers L,R,l,r.
    (1T105,1LR109,2lr36)
     
    Output
    For each test case, output the answer in the form of “Case #i: ans” in a seperate line.
     
    Sample Input
    3 1 1 2 36 1 982180 10 10 496690841 524639270 5 20
     
    Sample Output
    Case #1: 665 Case #2: 1000000 Case #3: 447525746
     
    Source
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cmath>
     4 #include <cstring>
     5 #include <algorithm>
     6 #include <set>
     7 #include <map>
     8 #include <queue>
     9 #include <stack>
    10 #include <vector>
    11 using namespace std;
    12 #define mod 1000000007
    13 typedef long long ll;
    14 int t;
    15 int bit[40];
    16 int ans[40];
    17 ll dp[40][40][40];
    18 ll dfs(int pos,int zero,int jinzhi,int flag,int beg)
    19 {
    20     if(pos<0) return zero==0;
    21     if(dp[pos][jinzhi][beg]!=-1&&!flag&&!zero)
    22         return dp[pos][jinzhi][beg];
    23     ll sum=0;
    24     int up=flag?bit[pos]:jinzhi-1;
    25     for(int i=0; i<=up; i++){
    26         if(zero&&i==0)
    27             sum+=dfs(pos-1,zero,jinzhi,flag&&i==up,beg);
    28         else{
    29             if(zero){
    30                 ans[pos]=i;
    31                 sum+=dfs(pos-1,0,jinzhi,flag&&i==up,pos);
    32             }
    33             else if(pos<(beg+1)/2){
    34                 if(i==ans[beg-pos])
    35                     sum+=dfs(pos-1,0,jinzhi,flag&&i==up,beg);
    36             }
    37             else{
    38                 ans[pos]=i;
    39                 sum+=dfs(pos-1,0,jinzhi,flag&&i==up,beg);
    40             }
    41         }
    42     }
    43     ans[pos]=-1;
    44     if(!flag&&!zero)
    45         dp[pos][jinzhi][beg]=sum;
    46     return sum;
    47 }
    48 ll slove (int x,int jinzhi){
    49     int  len=0;
    50     while(x)
    51     {
    52         bit[len++]=x%jinzhi;
    53         x/=jinzhi;
    54     }
    55     return dfs(len-1,1,jinzhi,1,39);
    56 }
    57 int main()
    58 {
    59     scanf("%d",&t);
    60     memset(dp,-1,sizeof(dp));
    61     int ce=1;
    62     while(t--){
    63         int L,R,l,r;
    64         scanf("%d %d %d %d",&L,&R,&l,&r);
    65         ll ans=0;
    66         for(int i=l; i<=r; i++){
    67             ll sum=slove(R,i)-slove(L-1,i);
    68             ans=ans+sum*i+(R-L+1-sum);
    69         }
    70         printf("Case #%d: %lld
    ",ce++,ans);
    71     }
    72     return 0;
    73 }
  • 相关阅读:
    5分钟带你了解Kafka的技术架构
    聊聊我的知识体系
    你分得清楚Maven的聚合和继承吗?
    为抖音而生的多闪,如何获取抖音的用户数据?
    消息中间件系列第3讲:使用消息队列需要考虑的几个问题
    消息中间件系列第2讲:如何进行消息队列选型?
    消息中间件系列第1讲:为什么要用消息队列?
    JVM规范系列开篇:为什么要读JVM规范?
    安全编码实践之三:身份验证和会话管理防御
    安全编码实践之二:跨站脚本攻击防御
  • 原文地址:https://www.cnblogs.com/hsd-/p/7410859.html
Copyright © 2011-2022 走看看