zoukankan      html  css  js  c++  java
  • 算法分析-线性时间排序,决策树,计数排序,基数排序,桶排序【线性排序】

    决策树引导

          通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:

          女儿:多大年纪了?

          母亲:26。

          女儿:长的帅不帅?

          母亲:挺帅的。

          女儿:收入高不?

          母亲:不算很高,中等情况。

          女儿:是公务员不?

          母亲:是,在税务局上班呢。

          女儿:那好,我去见见。

          这个女孩的决策过程就是典型的分类树决策。相当于通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑(声明:此决策树纯属为了写文章而YY的产物,没有任何根据,也不代表任何女孩的择偶倾向,请各位女同胞莫质问我^_^):

          上图完整表达了这个女孩决定是否见一个约会对象的策略,其中绿色节点表示判断条件,橙色节点表示决策结果,箭头表示在一个判断条件在不同情况下的决策路径,图中红色箭头表示了上面例子中女孩的决策过程。

          这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。

          有了上面直观的认识,我们可以正式定义决策树了:

          决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

          可以看到,决策树的决策过程非常直观,容易被人理解。目前决策树已经成功运用于医学、制造产业、天文学、分支生物学以及商业等诸多领域。知道了决策树的定义以及其应用方法,下面介绍决策树的构造算法。

    下面给出A[1,2,3]排序的决策树,是算法导论的原图:

    思考:

    在一颗比较排序算法的决策树中,一个叶结点可能的最小深度是多少?

    分析:

    最少进行n-1次比较,所以深度最小是n-1

     

    下面给出代码:

    COUNTING-SORT 在数组 A={6,0,2,0,1,3,4,6,1,3,2}上的操作过程。

    (1)C[1..k]被初始化为0。
    (2)把等于A[j]的个数C[A[j]]进行循环累加 C[6]=1+1=2 C[0]=1+1=2 C[2]=1+1=2 C[1]=1+1=2 C[3]=1+1=2 C[4]=1 
    (3)把小于等于A[j]的个数C[A[j]]进行循环累加。
    C[0]=2
    C[1]=C[1]+C[0]=2+2=4
    C[2]=C[2]+C[1]=2+4=6
    C[3]=C[3]+C[2]=2+6=8
    C[4]=C[4]+C[3]=1+8=9
    C[5]=C[5]+C[4]=0+9=9
    C[6]=C[6]+C[5]=2+9=11
    (4)把A[j]放入到恰当的B[C[A[j]]]位置中去。
    B[C[2]]=B[6]=2    C[2]--  C[2]=5
    B[C[3]]=B[8]=3    C[3]--  C[3]=7
    B[C[1]]=B[4]=1    C[1]--  C[1]=3
    B[C[6]]=B[11]=6   C[6]--  C[6]=10
    B[C[4]]=B[9]=4    C[4]--  C[4]=8
    B[C[3]]=B[7]=3    C[3]--  C[3]=6
    B[C[1]]=B[3]=1    C[1]--  C[1]=2
    B[C[0]]=B[2]=0    C[0]--  C[0]=1
    B[C[2]]=B[5]=2    C[2]--  C[2]=4
    B[C[0]]=B[1]=0    C[0]--  C[0]=0
    B[C[6]]=B[10]=6   C[6]--  C[6]=9  所以:B[10]={0,0,1,4,2,2,3,3,4,6,6}

      1 Array.prototype.swap = function (i, j) {
      2     var temp = this[j];
      3     this[j] = this[i];
      4     this[i] = temp;
      5 };
      6 
      7 Array.prototype.getMaxVal = function () {
      8     //可以用任意我们学过的排序方法写,我们学过冒泡,选择,归并,快排,堆排序。
      9     //当然这样我们只要取出最大值即可,不需要全部排序,但是为了学程序,我将给出我们已经学过的所有排序方法,并全部排序
     10     var r = this.length - 1;
     11     //   return this.BUBBLE_SORT()[r];
     12     //    return this.SELECT_SORT()[r];
     13     //    return this.QUICK_SORT(0, r)[r];
     14     //heap_size = r+1; return.this.HRAP_SORT()[r];
     15     // return this.MERGE_SORT(0,r)[r];
     16     return this.INSERT_SORT()[r];
     17 };
     18 //冒泡
     19 Array.prototype.BUBBLE_SORT = function () {
     20 
     21     //冒泡就是两两将换,
     22     for (var i = this.length - 1; i > 0; i--) {
     23         for (var j = 0; j < i; j++) {
     24             if (this[j] > this[j + 1]) {
     25                 this.swap(j, j + 1);
     26             }
     27         }
     28     }
     29     return this;
     30 };
     31 
     32 
     33 //选择排序
     34 
     35 Array.prototype.SELECT_SORT = function () {
     36     for (var i = 0; i < this.length - 1; i++) {
     37         var min = this[i];  //默认选择第一个最小;
     38         var index = i;  //记录最小值的坐标
     39 
     40         for (var j = i + 1; j < this.length; j++) {
     41             if (this[j] < min) {
     42                 min = this[j];
     43                 index = j;
     44             }
     45         }
     46         this.swap(index, i);
     47     }
     48     return this;
     49 };
     50 
     51 
     52 //随机算法-快排
     53 //思想就是分治,递归。
     54 //最主要的函数就是PARTITION,返回下标i,i的左边都比A[i]小,右边比他大;
     55 Array.prototype.PARTITION = function (p, r) {
     56     var i = p - 1;
     57     var x = this[r];
     58     for (var j = p; j <= r - 1; j++) {
     59         if (this[j] < x) {
     60             this.swap(++i, j);
     61 
     62         }
     63 
     64     }
     65     this.swap(++i, r);
     66     return i;
     67 };
     68 
     69 Array.prototype.RANDOM_PARTION = function (p, r) {
     70 
     71     var q = p + Math.round(Math.random() * (r - p));
     72     this.swap(q, r);
     73     return this.PARTITION(p, r);
     74 };
     75 
     76 Array.prototype.QUICK_SORT = function (p, r) {
     77     if (r > p) {
     78         var q = this.RANDOM_PARTION(p, r);
     79         arguments.callee.call(this, p, q - 1);
     80         arguments.callee.call(this, q + 1, r);
     81     }
     82     return this;
     83 };
     84 
     85 
     86 //堆排序
     87 //其核心函数在于MAX_HRAPTITY,总能让i位置是最大的。
     88 var heap_size = 0; //包含heap_size下标在内的,之后的下标都是排序好的。
     89 
     90 Array.prototype.HEAP_SORT = function () {
     91     this.BUILD_MAX_HEAP();
     92     while (heap_size > 1) {
     93         this.swap(0, --heap_size);
     94         this.MAX_HEAPTIFY(0);
     95     }
     96     heap_size = this.length; //最后复原
     97     return this;
     98 };
     99 
    100 //生成最大堆
    101 Array.prototype.BUILD_MAX_HEAP = function () {
    102 
    103     for (var i = Math.floor(this.length / 2) - 1; i >= 0; i--) {
    104         this.MAX_HEAPTIFY(i);
    105     }
    106 };
    107 
    108 //生成以i为根节点,它为最大值
    109 Array.prototype.MAX_HEAPTIFY = function (i) {
    110     var largest = i;
    111     var l = i * 2 + 1;
    112     var r = i * 2 + 2;
    113 
    114     if (l < heap_size && this[l] > this[largest]) {
    115 
    116         largest = l;
    117     }
    118 
    119     if (r < heap_size && this[r] > this[largest]) {
    120 
    121         largest = r;
    122     }
    123     if (largest !== i) {
    124         this.swap(largest, i);
    125         arguments.callee.call(this, largest);
    126     }
    127 };
    128 
    129 //heap_size = A.length;
    130 //归并排序
    131 //其核心思想是分治,递归
    132 
    133 Array.prototype.MERGE_SORT = function (start, end) {
    134 
    135     if (end > start) { //记住这里没有等号,不然会一直递归下去。
    136         var middle = Math.floor((start + end) / 2);
    137         arguments.callee.call(this, start, middle);
    138         arguments.callee.call(this, middle + 1, end);
    139         this.MEAGE(start, middle, end);
    140     }
    141     return this;
    142 };
    143 
    144 Array.prototype.MEAGE = function (s, m, e) {
    145     var A = this.slice(s, m + 1),
    146         B = this.slice(m + 1, e + 1),
    147         lenA = m + 1 - s,
    148         lenB = e - m,
    149         i = 0,
    150         j = 0;
    151 
    152     while (i < lenA && j < lenB) {
    153         A[i] < B[j] ? this[s++] = A[i++] : this[s++] = B[j++];
    154     }
    155     while (i < lenA) {
    156         this[s++] = A[i++];
    157     }
    158     while (j < lenB) {
    159         this[s++] = B[j++];
    160     }
    161 };
    162 
    163 
    164 //插入排序
    165 Array.prototype.INSERT_SORT = function () {
    166     try {
    167         if (this.length < 1) {
    168             throw new Error("错误长度的数组");
    169         }
    170         for (var i = 1; i < this.length; i++) {
    171             var j = i - 1,
    172                 temp = this[i];
    173             while (this[j] > temp && j >= 0) {
    174                 this[j + 1] = this[j];
    175                 j--;
    176             }
    177             this[j + 1] = temp;
    178         }
    179 
    180     } catch (e) {
    181         console.error(e);
    182     } finally {
    183         return this;
    184     }
    185 };
    186 
    187 //初始化数组全为0;
    188 Array.prototype.setZero4arr = function (k) {
    189     var B = [];
    190     for (var i = 0; i <= k; i++) {
    191         B[i] = 0;
    192     }
    193     return B;
    194 };
    195 
    196 
    197 var A = [6, 0, 2, 0, 1, 3, 4, 6, 1, 3, 2],
    198     k = A.getMaxVal(),
    199     B = A.setZero4arr(A.length - 1);  //最后放入
    200 
    201 //计数排序
    202 Array.prototype.COUNT_SORT = function (max, B) {
    203 
    204     var C = this.setZero4arr(max);   //0...max
    205 
    206 
    207     for (var i = 0; i < this.length; i++) {
    208         C[this[i]]++;   //知道了每个数的个数
    209     }
    210 
    211     //累加得到最后的结果  C[i]包含了<= i 的个数。
    212     for (var j = 1; j < C.length; j++) {
    213         C[j] += C[j - 1];
    214     }
    215     //最后填充B
    216     for (var k = this.length - 1; k >= 0; k--) {
    217         B[C[this[k]] - 1] = this[k];
    218 
    219         //由于每个元素可能都不相同,因此,每当将一个值A[k]放入数组B中的时候,都要减少C[A[k]]的值,
    220         //这会使得下一个其值等于A[k]的输入元素(如果存在的话)直接进入输出数组B中A[k]的前一个位置。
    221         C[this[k]]--;
    222 
    223     }
    224     return B;
    225 };
    226 
    227 //思考 这样写对吗?稳定吗?看下面的思考题。
    228 /*Array.prototype.COUNTING_SORT = function (k, B) {
    229 
    230     var C = this.setZero4arr(k);
    231 
    232     for (var i = 0; i < this.length; i++) {
    233         C[this[i]]++;
    234     }
    235     for (var j = 1; j < C.length; j++) {
    236         C[j] += C[j - 1];
    237     }
    238 
    239     for (var k = 0; k < this.length; k++) {
    240         B[C[this[k]] - 1] = this[k];
    241         C[this[k]]--;
    242     }
    243     return B;
    244 
    245 };*/
    246 
    247 
    248 console.log(A.COUNTING_SORT(k, B));

    8.2-2 试证明COUNTING-SORT是稳定的。
    由8.2-1例子可以发现 开始时候B[6]=2,这个是数组靠后位置的2,因为第4个循环是从后往前循环的,所以经过多次j--后,到了B[5]=2 这是考前位置的2.所以由8.2-1例子可以看出,原数组A靠后相同的数放到了新数组B靠后的位置,而原数组A靠前的数放到了新数组B靠前的位置。所以COUNTING-SORT是稳定的。

    8.2-3 假设我们在COUNTING-SORT的第10行循环开始部分,将代码改写为:10.for j=1 to A.length 试证明该算法仍然正确,它还稳定吗?
    如果把第10行改成for j=1 to A.length ,颠倒顺序处理元素的顺序,那么还是8.2-1的例子,其中的第(4)个循环就要微调了,对于相同元素来说,原数组靠前的相同元素出现在新数组靠后的位置上,反之亦然。所以就不稳定了。

     8.2-4 设计一个算法,它能够对于任何给定的驾驭0到K之间的n个整数先进行预处理,然后再O(1)时间内回答输入的n个整数中有多少个落在区间[a..b]内你设计的算法预处理时间应为Θ(n+k).
    在n个整数中,通过第(3)个循环,计算出小于a值得元素个数C[a-1],小于等于b值得元素个数C[b],两者差值就是在[a,b]区间上的元素个数。
    设落在区间[a,b]上元素个数x=C[b]-C[a-1].

    基数排序

    基数排序不需要比较关键字的大小

    它是根据关键字中各位的值,通过对排序的N个元素进行若干趟“分配”与“收集”来实现排序的。 

    不妨通过一个具体的实例来展示一下,基数排序是如何进行的。 

    设有一个初始序列为: R {50, 123, 543, 187, 49, 30, 0, 2, 11, 100}。

    我们知道,任何一个阿拉伯数,它的各个位数上的基数都是以0~9来表示的。

    所以我们不妨把0~9视为10个桶。 

    我们先根据序列的个位数的数字来进行分类,将其分到指定的桶中。例如:R[0] = 50,个位数上是0,将这个数存入编号为0的桶中。

                                       

    分类后,我们在从各个桶中,将这些数按照从编号0到编号9的顺序依次将所有数取出来。

    这时,得到的序列就是个位数上呈递增趋势的序列。 

    按照个位数排序: {50, 30, 0, 100, 11, 2, 123, 543, 187, 49}。

    接下来,可以对十位数、百位数也按照这种方法进行排序,最后就能得到排序完成的序列。

     

    8.3-2 下面的排序算法中哪些是稳定的,插入排序,归并排序,堆排序和快速排序?给出一个能使任何排序算法都稳定的方法。
    归并和插入排序是稳定的,因为他们不改变相同元素原有的顺序。堆排序和快速排序是不稳定的。如果想让以上4种排序都是稳定排序,那么我们保存原数组相同元素的下标,在进行比较排序时,不同元素肯定没有这个问题,而相同元素在原数组中较小的下标对应的值放入到前面,较大的放到后面。

     下面我给出基数排序的一个算法实现代码:

     1 //基数排序
     2 //他是基于计数排序的。
     3 
     4 Array.prototype.COUNTING_SORT_4_RDIEX_SORT = function (b, d) {
     5     var C = this.setZero4arr(9);  //计数排序第一步
     6     var B = this.setZero4arr(this.length - 1);
     7 
     8     for (var j = 0; j < this.length; j++) { //计数排序第二步
     9 
    10         C[get_bit_val(this[j], b, d)]++;
    11     }
    12 
    13     for (var k = 1; k < C.length; k++) { //计数排序第三步
    14         C[k] += C[k - 1];
    15     }
    16 
    17     for (var i = this.length - 1; i >= 0; i--) { //计数排序第四步
    18         B[C[get_bit_val(this[i], b, d)] - 1] = this[i]; 
    19         C[get_bit_val(this[i], b, d)]--;  //这一步很关键,如果遇到重复的,以前是往前插入了,不然会覆盖。
    20     }
    21     return B;
    22 };
    23 
    24 //获得该数字第i位的数字,从个位开始取,如果没有这位的数,默认为0。
    25 /*
    26  *  x是传入的数
    27  *  i是第几位
    28  *  最大数的长度
    29  * 
    30  * */
    31 function get_bit_val(x, i, d) {
    32     x += "";
    33     var temp = x.split("");
    34     while (temp.length < d) {
    35         temp.unshift(0); //往前填充0
    36     }
    37     return temp[i];
    38 }
    39 
    40 
    41 Array.prototype.RDIEX_SORT = function () {
    42     var k = this.getMaxVal().toString();
    43     var d = k.length;
    44     var B = [];
    45     for (var i = d - 1; i >= 0; i--) {
    46         i == d - 1 ? B = this.COUNTING_SORT_4_RDIEX_SORT(i, d) : B = this.COUNTING_SORT_4_RDIEX_SORT.call(B, i, d);
    47     }
    48     return B;
    49 };
    50 
    51 var A = [16, 22, 2, 323320, 13, 3, 2321, 45546, 5766, 7, 23];
    52 console.log(A.RDIEX_SORT());

    桶排序Bucket sort


    补充说明三点

    1,桶排序是稳定的

    2,桶排序是常见排序里最快的一种,比快排还要快…大多数情况下

    3,桶排序非常快,但是同时也非常耗空间,基本上是最耗空间的一种排序算法

    二.算法描述

            例如要对大小为[1..1000]范围内的n个整数A[1..n]排序,可以把桶设为大小为10的范围,具体而言,设集合B[1]存储[1..10]的整数,集合B[2]存储(10..20]的整数,……集合B[i]存储((i-1)*10, i*10]的整数,i = 1,2,..100。总共有100个桶。然后对A[1..n]从头到尾扫描一遍,把每个A[i]放入对应的桶B[j]中。 然后再对这100个桶中每个桶里的数字排序,这时可用冒泡,选择,乃至快排,一般来说任何排序法都可以。最后依次输出每个桶里面的数字,且每个桶中的数字从小到大输出,这样就得到所有数字排好序的一个序列了。

            下图表示出了桶排序作用于有10个数的输入数组上的操作过程。

     

                                                 

     1 function getR2(x, y) {
     2     return x * x + y * y;
     3 }
     4 Array.prototype.BUCKET_SORT = function () {
     5     var n = this.length; //n个桶
     6     var d2 = 0;//点到(0,0)的距离的平方
     7     var num = Math.ceil(d2 * n); //放在第几个桶里。
     8     var B = []; //当放桶子用
     9     var result = [];
    10     for (var i = 0; i < n; i++) {
    11         B[i] = {val: [], next: null};
    12     }
    13 
    14     for (var j = 0; j < n; j++) {
    15         d2 = getR2(this[j].x, this[j].y);
    16         num = Math.ceil(d2 * n);
    17         if (num === 0) num++; //直接在原点直接设为第一个桶子里
    18         B[num - 1].val.push(this[j]);
    19     }
    20 
    21     for (var k = 0; k < n; k++) {
    22         if (B[k].val.length == 0) {
    23             continue;
    24         }
    25         B[k].val.INSERT_SORT();
    26         // result.concat(B[k].val);
    27         result = result.concat(B[k].val);
    28     }
    29     return result;
    30 };
    31 Array.prototype.INSERT_SORT = function () {
    32     for (var i = 1; i < this.length; i++) {
    33         var key = this[i];
    34         var j = i - 1;
    35         while (j >= 0 && this[j] > key) {
    36             this[j + 1] = this[j];
    37             j--;
    38         }
    39         this[j + 1] = this[i];
    40     }
    41     return this;
    42 };
    43 
    44 var A = [{x: 0, y: 0}, {x: 0.21, y: 0.3}, {x: 1, y: 0}];
    45 
    46 console.log(A.BUCKET_SORT());
  • 相关阅读:
    MySQL Partition--分区基础
    MySQL Replication--跳过复制错误
    MySQL--SHOW PROCESSLIST
    MySQL InnoDB Engine--缓冲器数据交换
    MySQL InnoDB Engine--数据预热
    MySQL Profiling--常用命令
    Linux--用户管理
    vi和vim快捷键的使用
    vi和vim
    xftp使用
  • 原文地址:https://www.cnblogs.com/huenchao/p/5910669.html
Copyright © 2011-2022 走看看