zoukankan      html  css  js  c++  java
  • Kafka文档

    Kafka文档

    一、Kafka简介

    Kafka是一个分布式的消息队列系统(Message Queue)。

    官网:https://kafka.apache.org/

    kafka集群有多个Broker服务器组成,每个类型的消息被定义为topic。

    同一topic内部的消息按照一定的key和算法被分区(partition)存储在不同的Broker上。

    消息生产者producer和消费者consumer可以在多个Broker上生产/消费topic

    概念理解:

    • Topics and Logs:

    Topic即为每条发布到Kafka集群的消息都有一个类别,topic在Kafka中可以由多个消费者订阅、消费。

    每个topic包含一个或多个partition(分区),partition数量可以在创建topic时指定,每个分区日志中记录了该分区的数据以及索引信息。如下图:

    Kafka只保证一个分区内的消息有序,不能保证一个主题的不同分区之间的消息有序。如果你想要保证所有的消息都绝对有序可以只为一个主题分配一个分区。

    分区会给每个消息记录分配一个顺序ID号(偏移量), 能够唯一地标识该分区中的每个记录。Kafka集群保留所有发布的记录,不管这个记录有没有被消费过,Kafka提供相应策略通过配置从而对旧数据处理。

    实际上,每个消费者唯一保存的元数据信息就是消费者当前消费日志的位移位置。位移位置是由消费者控制,即、消费者可以通过修改偏移量读取任何位置的数据。

    • Distribution -- 分布式
    • Producers -- 生产者

    指定topic来发送消息到Kafka Broker

    • Consumers -- 消费者

    根据topic消费相应的消息

     

    二、Kafka集群部署

    集群规划

    Zookeeper集群共三台服务器,分别为:node06、node07、node08。

    Kafka集群共三台服务器,分别为:node06、node07、node08。

    1、Zookeeper集群准备

    kafka是一个分布式消息队列,需要依赖ZooKeeper,请先安装好zk集群。

    Zookeeper集群安装步骤略。

    2、安装Kafka

    下载压缩包(官网地址:http://kafka.apache.org/downloads.html

    解压:

    tar zxvf kafka_2.10-0.9.0.1.tgz -C /opt/

    mv kafka_2.10-0.9.0.1/ kafka

    修改配置文件:config/server.properties

    核心配置参数说明:

    broker.id: broker集群中唯一标识id,0、1、2、3依次增长(broker即Kafka集群中的一台服务器)

    注:

    当前Kafka集群共三台节点,分别为:node1、node2、node3。对应的broker.id分别为0、1、2。

    zookeeper.connect: zk集群地址列表

    将当前node1服务器上的Kafka目录同步到其他node2、node3服务器上:

    scp -r /opt/kafka/ node2:/opt

    scp -r /opt/kafka/ node3:/opt

    修改node2、node3上Kafka配置文件中的broker.id(分别在node2、3服务器上执行以下命令修改broker.id)

    sed -i -e 's/broker.id=.*/broker.id=1/' /opt/kafka/config/server.properties

    sed -i -e 's/broker.id=.*/broker.id=2/' /opt/kafka/config/server.properties

    3、启动Kafka集群

    A、启动Zookeeper集群。

    B、启动Kafka集群。

    分别在三台服务器上执行以下命令启动:

    bin/kafka-server-start.sh config/server.properties

    4、测试

    创建话题

    (kafka-topics.sh --help查看帮助手册)

    创建topic:

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --create --replication-factor 2 --partitions 3 --topic test

     

    (参数说明:

    --replication-factor:指定每个分区的复制因子个数,默认1个

    --partitions:指定当前创建的kafka分区数量,默认为1个

    --topic:指定新建topic的名称)

    查看topic列表:

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --list

    查看“test”topic描述:

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --describe --topic test

     

    创建生产者:

    bin/kafka-console-producer.sh --broker-list node06:9092,node07:9092,node08:9092 --topic test

    创建消费者:

    bin/kafka-console-consumer.sh --zookeeper node06:2181,node07:2181,node08:2181 --from-beginning --topic test

    注:

    查看帮助手册:

    bin/kafka-console-consumer.sh help

     

    三、Flume & Kafka

    1、Flume安装

    Flume安装流程:

    解压jar包

    mv conf/flume-env.sh.template flume-env.sh

    vi flume-env.sh java环境变量

    ./bin flume-ng version

    /conf/下 创建配置文件fk.conf内容如下:

    a1.sources = r1

    a1.sinks = k1

    a1.channels = c1

     

    # Describe/configure the source

    a1.sources.r1.type = avro

    a1.sources.r1.bind = node06

    a1.sources.r1.port = 41414

     

    # Describe the sink

    a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink

    a1.sinks.k1.topic = testflume

    a1.sinks.k1.brokerList = node06:9092,node07:9092,node08:9092

    a1.sinks.k1.requiredAcks = 1

    a1.sinks.k1.batchSize = 20

    a1.sinks.k1.channel = c1

     

    # Use a channel which buffers events in memory

    a1.channels.c1.type = memory

    a1.channels.c1.capacity = 1000000

    a1.channels.c1.transactionCapacity = 10000

     

    # Bind the source and sink to the channel

    a1.sources.r1.channels = c1

    a1.sinks.k1.channel = c1

    2、Flume + Kafka

    启动zk集群

    A、启动Kafka集群。

    bin/kafka-server-start.sh config/server.properties

    B、配置Flume集群,并启动Flume集群。

    bin/flume-ng agent -n a1 -c conf -f conf/fk.conf -Dflume.root.logger=DEBUG,console

    3、测试

    • 分别启动Zookeeper、Kafka、Flume集群。

    zkServer.sh start

    bin/kafka-server-start.sh config/server.properties

    bin/flume-ng agent -n a1 -c conf -f conf/fk.conf -Dflume.root.logger=DEBUG,console

    • 创建topic:(不用)

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --create --replication-factor 2 --partitions 3 --topic testflume

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --create --replication-factor 2 --partitions 1 --topic LogError

     

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --list

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --create --replication-factor 2 --partitions 1 --topic LogError

    bin/kafka-console-consumer.sh --zookeeper node06:2181,node07:2181,node08:2181 --from-beginning --topic LogError

    • 启动消费者:

    bin/kafka-console-consumer.sh --zookeeper node06:2181,node07:2181,node08:2181 --from-beginning --topic testflume

    启动生产者

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --create --replication-factor 2 --partitions 1 --topic mylog_cmcc

    查看topic列表:

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --list

    启动消费者

    bin/kafka-console-consumer.sh --zookeeper node06:2181,node07:2181,node08:2181 --from-beginning --topic mylog_cmcc

    • 运行“RpcClientDemo”代码,通过rpc请求发送数据到Flume集群。

    Flume中source类型为AVRO类型,此时通过Java发送rpc请求,测试数据是否传入Kafka。

    其中,Java发送Rpc请求Flume代码示例如下:

    (参考Flume官方文档:http://flume.apache.org/FlumeDeveloperGuide.html

    import org.apache.flume.Event;

    import org.apache.flume.EventDeliveryException;

    import org.apache.flume.api.RpcClient;

    import org.apache.flume.api.RpcClientFactory;

    import org.apache.flume.event.EventBuilder;

    import java.nio.charset.Charset;

     

    /**

     * Flume官网案例

     * http://flume.apache.org/FlumeDeveloperGuide.html

     * @author root

     */

    public class RpcClientDemo {

       

        public static void main(String[] args) {

           MyRpcClientFacade client = new MyRpcClientFacade();

           // Initialize client with the remote Flume agent's host and port

           client.init("node1", 41414);

     

           // Send 10 events to the remote Flume agent. That agent should be

           // configured to listen with an AvroSource.

           String sampleData = "Hello Flume!";

           for (int i = 0; i < 10; i++) {

               client.sendDataToFlume(sampleData);

               System.out.println("发送数据:" + sampleData);

           }

     

           client.cleanUp();

        }

    }

     

    class MyRpcClientFacade {

        private RpcClient client;

        private String hostname;

        private int port;

     

        public void init(String hostname, int port) {

           // Setup the RPC connection

           this.hostname = hostname;

           this.port = port;

           this.client = RpcClientFactory.getDefaultInstance(hostname, port);

           // Use the following method to create a thrift client (instead of the

           // above line):

           // this.client = RpcClientFactory.getThriftInstance(hostname, port);

        }

     

        public void sendDataToFlume(String data) {

           // Create a Flume Event object that encapsulates the sample data

           Event event = EventBuilder.withBody(data, Charset.forName("UTF-8"));

     

           // Send the event

           try {

               client.append(event);

           } catch (EventDeliveryException e) {

               // clean up and recreate the client

               client.close();

               client = null;

               client = RpcClientFactory.getDefaultInstance(hostname, port);

               // Use the following method to create a thrift client (instead of

               // the above line):

               // this.client = RpcClientFactory.getThriftInstance(hostname, port);

           }

        }

     

        public void cleanUp() {

           // Close the RPC connection

           client.close();

        }

    }

     

    四、Storm & Kafka

    官网地址:

    http://storm.apache.org/about/integrates.html

    五、flume+kafka+spout

    bin/kafka-topics.sh --zookeeper node06:2181,node07:2181,node08:2181 --create --replication-factor 2 --partitions 1 --topic LogError

  • 相关阅读:
    python--脚本传参与shell脚本传参(位置参数)
    python--一起来盖个时间戳!!
    python--多线程的应用
    python-局域网内实现web页面用户端下载文件,easy!
    java初始化顺序
    java List<String>的初始化 的一个小问题
    java.util.Queue用法
    C#中的struct(结构)为值类型,struct类型全接触
    Java 实例
    git还原某个特定的文件到之前的版本
  • 原文地址:https://www.cnblogs.com/huiandong/p/9272475.html
Copyright © 2011-2022 走看看