zoukankan      html  css  js  c++  java
  • 利用Tensorflow实现卷积神经网络模型

    首先看一下卷积神经网络模型,如下图:

    卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC
    池化层:为了减少运算量和数据维度而设置的一种层。

    代码如下:

    n_input  = 784        # 28*28的灰度图
    n_output = 10         # 完成一个10分类的操作
    weights  = {
        #'权重参数': tf.Variable(tf.高期([feature的H, feature的W, 当前feature连接的输入的深度, 最终想得到多少个特征图], 标准差=0.1)),
        'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)),
        'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.1)),
       #'全连接层参数': tf.Variable(tf.高斯([特征图H*特征图W*深度, 最终想得到多少个特征图], 标准差=0.1)),
        'wd1': tf.Variable(tf.random_normal([7*7*128, 1024], stddev=0.1)),
        'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1))
    }
    biases   = {
       #'偏置参数': tf.Variable(tf.高斯([第1层有多少个偏置项], 标准差=0.1)),
        'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)),
        'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
        'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
        'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1))
    }
    
    #卷积神经网络
    def conv_basic(_input, _w, _b, _keepratio):
        #将输入数据转化成一个四维的[n, h, w, c]tensorflow格式数据
        #_input_r = tf.将输入数据转化成tensorflow格式(输入, shape=[batch_size大小, H, W, 深度])
        _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])
    
        #第1层卷积    
        #_conv1 = tf.nn.卷积(输入, 权重参数, 步长=[batch_size大小, H, W, 深度], padding='建议选择SAME')
        _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
        #_conv1 = tf.nn.非线性激活函数(tf.nn.加法(_conv1, _b['bc1']))
        _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))
        #第1层池化
        #_pool1 = tf.nn.池化函数(_conv1, 指定池化窗口的大小=[batch_size大小, H, W, 深度], strides=[1, 2, 2, 1], padding='SAME')
        _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        #随机杀死一些节点,不让所有神经元都加入到训练中
        #_pool_dr1 = tf.nn.dropout(_pool1, 保留比例)
        _pool_dr1 = tf.nn.dropout(_pool1, _keepratio)
        
        #第2层卷积
        _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
        _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
        _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        _pool_dr2 = tf.nn.dropout(_pool2, _keepratio)
        
        #全连接层
        #转化成tensorflow格式
        _dense1 = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])
        #第1层全连接层
        _fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1']))
        _fc_dr1 = tf.nn.dropout(_fc1, _keepratio)
        #第2层全连接层
        _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
        #返回值
        out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
            'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
            'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
        }
        return out
    print ("CNN READY")
    
    #设置损失函数&优化器(代码说明:略 请看前面文档)
    learning_rate = 0.001
    x      = tf.placeholder("float", [None, nsteps, diminput])
    y      = tf.placeholder("float", [None, dimoutput])
    myrnn  = _RNN(x, weights, biases, nsteps, 'basic')
    pred   = myrnn['O']
    cost   = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) 
    optm   = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Adam Optimizer
    accr   = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(pred,1), tf.argmax(y,1)), tf.float32))
    init   = tf.global_variables_initializer()
    print ("Network Ready!")
    
    #训练(代码说明:略 请看前面文档)
    training_epochs = 5
    batch_size      = 16
    display_step    = 1
    sess = tf.Session()
    sess.run(init)
    print ("Start optimization")
    for epoch in range(training_epochs):
        avg_cost = 0.
        #total_batch = int(mnist.train.num_examples/batch_size)
        total_batch = 100
        # Loop over all batches
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            batch_xs = batch_xs.reshape((batch_size, nsteps, diminput))
            # Fit training using batch data
            feeds = {x: batch_xs, y: batch_ys}
            sess.run(optm, feed_dict=feeds)
            # Compute average loss
            avg_cost += sess.run(cost, feed_dict=feeds)/total_batch
        # Display logs per epoch step
        if epoch % display_step == 0: 
            print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
            feeds = {x: batch_xs, y: batch_ys}
            train_acc = sess.run(accr, feed_dict=feeds)
            print (" Training accuracy: %.3f" % (train_acc))
            testimgs = testimgs.reshape((ntest, nsteps, diminput))
            feeds = {x: testimgs, y: testlabels, istate: np.zeros((ntest, 2*dimhidden))}
            test_acc = sess.run(accr, feed_dict=feeds)
            print (" Test accuracy: %.3f" % (test_acc))
    print ("Optimization Finished.")        
  • 相关阅读:
    iframe嵌套网页
    text-shadow用法
    响应式布局
    JavaScript控制显示与隐藏
    JavaScript数据类型
    JavaScript基础
    自适应网页设计/响应式Web设计
    不是人家太装逼,而是我们太low
    HTML空格的特性
    如何在Crystal Report中加入Html Field, Rtf Field
  • 原文地址:https://www.cnblogs.com/hunttown/p/6834397.html
Copyright © 2011-2022 走看看