zoukankan      html  css  js  c++  java
  • hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP?

    Problem Description

    Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.
    C(n,0)=C(n,n)=1 (n ≥ 0)
    C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)
    Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.
    As the answer may be very large, you only need to output the answer mod p which is a prime.
     
    Input
    Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
     
    Output
    For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
     
    Sample Input
    1 1 2
    4 2 7
     
    Sample Output
    Case #1: 0
    Case #2: 5
     
    思路:Lucas定理正好适用于p较小的组合数取模问题;由于很多组查询,所以只能预处理出每个素数对应的每个每个值的阶乘值;
    Lucas定理:C(n,m)=C([n/p],[m/p]) * C(a0,b0)  (mod p);
    这是我们能容易地求解出终点的值,但是如果我们是一层一层地加到边界,再找还有多少个1?这样直接T了,现在就需要帕斯卡公式还计算这个sigma和了
    帕斯卡公式:
    1.  C(n+1,m) = C(n,m) + C(n-1,m-1)+...+C(n-m,0);  当m <= n/2时,斜向上走到左边界,之后还有n - m个1
    2.  C(n+1,m+1) = C(n-1,m) + C(n-2,m)+...+C(n-m,m); 一直竖直向上走到右边界,之后还有m个1
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string.h>
    #include<algorithm>
    #include<vector>
    #include<cmath>
    #include<stdlib.h>
    #include<time.h>
    #include<stack>
    #include<set>
    #include<map>
    #include<queue>
    using namespace std;
    #define rep0(i,l,r) for(int i = (l);i < (r);i++)
    #define rep1(i,l,r) for(int i = (l);i <= (r);i++)
    #define rep_0(i,r,l) for(int i = (r);i > (l);i--)
    #define rep_1(i,r,l) for(int i = (r);i >= (l);i--)
    #define MS0(a) memset(a,0,sizeof(a))
    #define MS1(a) memset(a,-1,sizeof(a))
    #define MSi(a) memset(a,0x3f,sizeof(a))
    #define inf 0x3f3f3f3f
    #define lson l, m, rt << 1
    #define rson m+1, r, rt << 1|1
    typedef pair<int,int> PII;
    #define A first
    #define B second
    #define MK make_pair
    typedef __int64 ll;
    template<typename T>
    void read1(T &m)
    {
        T x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        m = x*f;
    }
    template<typename T>
    void read2(T &a,T &b){read1(a);read1(b);}
    template<typename T>
    void read3(T &a,T &b,T &c){read1(a);read1(b);read1(c);}
    template<typename T>
    void out(T a)
    {
        if(a>9) out(a/10);
        putchar(a%10+'0');
    }
    const int N = 10005;
    int prime[N],check[N];
    void getprime()
    {
        for(int i = 2;i < N;i++)if(!check[i]){
            prime[i] = ++prime[0];
            for(int j = i*i;j < N;j += i)
                check[j] = 1;
        }
    }
    int f[4000][N];
    void init()
    {
        getprime();
        for(int i = 2;i <= N;i++){
            if(prime[i] == 0) continue;
            int id = prime[i];
            f[id][0] = 1;
            for(int j = 1;j < N;j++)
                f[id][j] = f[id][j-1]*j%i;
        }
    }
    int pow_mod(int a,int n,int p)
    {
        int ans = 1;
        while(n){
            if(n & 1) ans = ans*a%p;
            a = a*a%p;
            n >>= 1;
        }
        return ans;
    }
    int C(int n,int m,int p)
    {
        if(n < m) return 0;
        if(n == m) return 1;
        int id = prime[p];
        int a = f[id][n],b = f[id][m]*f[id][n - m]%p;
        return a*pow_mod(b,p-2,p)%p;
    }
    int Lucas(int n,int m,int p)
    {
        if(m == 0) return 1;
        if(m == 1) return n%p;
        return C(n%p,m%p,p)*Lucas(n/p,m/p,p)%p;
    }
    int main()
    {
        init();
        int n,m,p,kase = 1;
        while(scanf("%d%d%d",&n,&m,&p) == 3){
            if(m <= n/2) m = n - m;
            int ans = Lucas(n + 1,m + 1,p);
            printf("Case #%d: %d
    ",kase++,(ans + m)%p);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    高性能MySQL--创建高性能的索引
    error:0906D064:PEM routines:PEM_read_bio:bad base64 decode
    高性能MySQL--MySQL数据类型介绍和最优数据类型选择
    Elasticsearch入门和查询语法分析(ik中文分词)
    裁员浪潮,互联网人该何去何从?
    django+mysql的使用
    很详细的Django入门详解
    (2021年1月5日亲测有效)最新PyCharm 安装教程&激活破解,Pycharm激活,Pycharm破解
    (2021年1月5日更新)!最新的pycharm永久激活办法,亲测有效
    太干了!一张图整理了 Python 所有内置异常
  • 原文地址:https://www.cnblogs.com/hxer/p/5231900.html
Copyright © 2011-2022 走看看