zoukankan      html  css  js  c++  java
  • 300. Longest Increasing Subsequence

    #week12

    Given an unsorted array of integers, find the length of longest increasing subsequence.

    For example,
    Given [10, 9, 2, 5, 3, 7, 101, 18],
    The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

    Your algorithm should run in O(n2) complexity.

    Follow up: Could you improve it to O(n log n) time complexity?

    Credits:
    Special thanks to @pbrother for adding this problem and creating all test cases.

    分析:

    最长不下降子序列

    状态转换:

    if (nums[j] < nums[i] && (f[j] + 1 > f[i])) 
    f[i] = f[j] + 1;

    题解:

     1 class Solution {
     2 public:
     3     int lengthOfLIS(vector<int>& nums) {
     4         int size = nums.size();
     5         if (size == 0) return 0;
     6         int f[size], max = 1;
     7         f[0] = 1;
     8         for (int i = 1; i < size; i++) {
     9             f[i] = 1;
    10             for (int j = 0; j < i; j++) {
    11                 if (nums[j] < nums[i] && (f[j] + 1 > f[i])) {
    12                     f[i] = f[j] + 1;   
    13                     if (f[i] > max) max = f[i];
    14                 }
    15             }
    16         }
    17         return max;
    18     }
    19 };

    其他人题解,O(nlogn)

     1 class Solution {
     2 public:
     3 int lengthOfLIS(vector<int>& nums) {
     4     vector<int> res;
     5     for(int i=0; i<nums.size(); i++) {
     6         auto it = std::lower_bound(res.begin(), res.end(), nums[i]);
     7         if(it==res.end()) res.push_back(nums[i]);
     8         else *it = nums[i];
     9     }
    10     return res.size();
    11 }
    12 };
  • 相关阅读:
    快速幂取模算法详解
    牛客网小白月赛5I区间(差分数组)
    多重背包模板
    hdu5791(DP)
    CodeForces
    最长上升子序列LIS(51nod1134)
    POJ1088(记忆搜索加dp)
    最长公共子序列LCS(POJ1458)
    Gym 100971J-Robots at Warehouse
    模板
  • 原文地址:https://www.cnblogs.com/iamxiaoyubei/p/8278270.html
Copyright © 2011-2022 走看看