http://www.lydsy.com/JudgeOnline/problem.php?id=1610
两种做法,一种计算几何,一种解析几何,但是计算几何的复杂度远远搞出解析集合(虽然精度最高)
计算几何:枚举每条线(变成向量),然后判断是否有其它线和他平行(叉积为0,但是要注意,初始化ans为1,因为我们只是判不加平行的)
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> using namespace std; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << #x << " = " << x << endl #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; } inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=205; struct Vector { int x, y; } line[N*N]; int n, x[N], y[N], cnt, ans=1; int main() { read(n); for1(i, 1, n) { read(x[i]); read(y[i]); } for1(i, 1, n-1) for1(j, i+1, n) line[++cnt].x=x[i]-x[j], line[cnt].y=y[i]-y[j]; for1(i, 1, cnt-1) { bool flag=1; for1(j, i+1, cnt) if(line[i].x*line[j].y==line[i].y*line[j].x) { flag=0; break; } if(flag) ++ans; } print(ans); return 0; }
解析几何:枚举每条边斜率,排序后判重。(精度略有损失但速度快)
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> using namespace std; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << #x << " = " << x << endl #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; } inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=205; const double eps=1e-10, oo=1e15; int n, x[N], y[N], cnt, ans; double k[N*N]; int main() { read(n); for1(i, 1, n) { read(x[i]); read(y[i]); } for1(i, 1, n-1) for1(j, i+1, n) if(x[i]!=x[j]) k[++cnt]=(double)(y[i]-y[j])/(x[i]-x[j]); else k[++cnt]=oo; sort(k+1, k+1+cnt); for1(i, 1, cnt) if(abs(k[i]-k[i-1])>eps) ++ans; print(ans); return 0; }
Description
Farmer John最近发明了一个游戏,来考验自命不凡的贝茜。游戏开始的时 候,FJ会给贝茜一块画着N (2 <= N <= 200)个不重合的点的木板,其中第i个点 的横、纵坐标分别为X_i和Y_i (-1,000 <= X_i <=1,000; -1,000 <= Y_i <= 1,000)。 贝茜可以选两个点画一条过它们的直线,当且仅当平面上不存在与画出直线 平行的直线。游戏结束时贝茜的得分,就是她画出的直线的总条数。为了在游戏 中胜出,贝茜找到了你,希望你帮她计算一下最大可能得分。
Input
* 第1行: 输入1个正整数:N * 第2..N+1行: 第i+1行用2个用空格隔开的整数X_i、Y_i,描述了点i的坐标
Output
第1行: 输出1个整数,表示贝茜的最大得分,即她能画出的互不平行的直线数
Sample Input
4
-1 1
-2 0
0 0
1 1
-1 1
-2 0
0 0
1 1
Sample Output
* 第1行: 输出1个整数,表示贝茜的最大得分,即她能画出的互不平行的直线数
HINT
4
输出说明:
贝茜能画出以下4种斜率的直线:-1,0,1/3以及1。