zoukankan      html  css  js  c++  java
  • 深度学习:mAP(mean average precision)

    mAP是指平均准确率,是机器学习中模型好坏的一种评价指标。在介绍mAP前应该首先了解几个概念:

    1、P (percision)      准确率,在周志华的《机器学习》中,称为“查准率”。在信息检索中,准确率是指我检索出的信息有多少比例是用户感兴趣的。

       P = 系统检索到的相关文件 / 系统检索到的文件总数

    2、R (recall)           召回率,又称为“查全率”,指用户感兴趣的信息有多少被检测出来了

      R = 系统检测到的相关文件 / 数据库中相关文件总数

    举个例子来说,某数据库中有1000个文件,我要搜索跟机器学习相关的文件,而数据库中机器学习相关文件有200个。搜索后,系统检索出100个文件,80个跟机器学习相关,那么:

      P(准确率) = 80 / 100 = 80%

           R(召回率)= 80 / 200 = 40%

    在改变检索算法后,再进行一次检索,结果检索出180个文件,机器学习相关文件有120个,那么:

      P(准确率)= 120 / 180 = 66.7%

      R(召回率)= 120 / 200 = 60% 

    这两个算法到底哪个算法好呢,很难单一的用准确率或召回率来评判。

    准确率和召回率一般有如下特点:准确率高,召回率就低。召回率高,准确率就低。这个也比较容易理解,比如要获得较高的召回率,势必要搜索出大量文件,还是上面那个例子,我搜索出500个文件,其中200个跟机器学习相关,那么召回率为100%,但是准确率只有40%。当然,如果算法能做到准确率和召回率都高,那是最好。

    那么如何结合准确率和召回率对模型进行评判呢,可以使用F度量

    3、F度量(F-measure)

      F度量涵盖了准确率和召回率这两个指标。其计算公式如下:

      F = 2 * P * R / (P + R)

      结合以上两个例子,第一个例子的F度量为0.53,第二个例子的F度量为0.63


    接下来进入主题,mAP是什么呢?

    前面介绍了准确率和召回率单独来评价模型不科学,结合这两个指标的话可以用F度量,其实还有一种方法,即Average Precision(平均精度AP)——以召回率和准确率为行纵坐标,得到二维曲线,即PR曲线。将PR曲线下的面积当作衡量尺度,得到AP值。

    mAP即平均AP值,是对多个验证集求平均AP值,其中QR指验证集个数

    reference:

    https://blog.csdn.net/qiu931110/article/details/80197754

    https://blog.csdn.net/jningwei/article/details/78955536

  • 相关阅读:
    spring mvc文件上传,request对象转换异常
    解决国内android sdk无法更新,google不能的简单办法
    1.5 高速找出机器故障
    图的深度优先搜索与广度优先搜索
    我对ThreadLocal的理解
    Leetcode--3Sum
    <转>Openstack Ceilometer监控项扩展
    怎样利用WordPress创建自己定义注冊表单插件
    java_免费视频课程汇总
    HDU 3641 Pseudoprime numbers(快速幂)
  • 原文地址:https://www.cnblogs.com/javaXRG/p/11743441.html
Copyright © 2011-2022 走看看