zoukankan      html  css  js  c++  java
  • [LeetCode] Maximum Subarray Sum


    Dynamic Programming

    There is a nice introduction to the DP algorithm in this Wikipedia article. The idea is to maintain a running maximum smax and a current summation sum. When we visit each num in nums, addnum to sum, then update smax if necessary or reset sum to 0 if it becomes negative.

    The code is as follows.

     1 class Solution {
     2 public:
     3     int maxSubArray(vector<int>& nums) {
     4         int sum = 0, smax = INT_MIN;
     5         for (int num : nums) {
     6             sum += num;
     7             if (sum > smax) smax = sum;
     8             if (sum < 0) sum = 0;
     9         }
    10         return smax;
    11     }
    12 };

    Divide and Conquer

    The DC algorithm breaks nums into two halves and find the maximum subarray sum in them recursively. Well, the most tricky part is to handle the case that the maximum subarray may span the two halves. For this case, we use a linear algorithm: starting from the middle element and move to both ends (left and right ends), record the maximum sum we have seen. In this case, the maximum sum is finally equal to the middle element plus the maximum sum of moving leftwards and the maximum sum of moving rightwards.

    Well, the code is just a translation of the above idea.

     1 class Solution {
     2 public:
     3     int maxSubArray(vector<int>& nums) {
     4         int smax = INT_MIN, n = nums.size();
     5         return maxSub(nums, 0, n - 1, smax);
     6     }
     7 private:
     8     int maxSub(vector<int>& nums, int l, int r, int smax) {
     9         if (l > r) return INT_MIN;
    10         int m = l + ((r - l) >> 1);
    11         int lm = maxSub(nums, l, m - 1, smax); // left half
    12         int rm = maxSub(nums, m + 1, r, smax); // right half
    13         int i, sum, ml = 0, mr = 0;
    14         // Move leftwards
    15         for (i = m - 1, sum = 0; i >= l; i--) {
    16             sum += nums[i];
    17             ml = max(sum, ml); 
    18         }
    19         // Move rightwards
    20         for (i = m + 1, sum = 0; i <= r; i++) {
    21             sum += nums[i];
    22             mr = max(sum, mr);
    23         }
    24         return max(smax, max(ml + mr + nums[m], max(lm, rm)));
    25     }
    26 };
  • 相关阅读:
    团队项目冲刺七
    团队项目冲刺六
    团队项目冲刺5
    团队项目冲刺4
    团队项目测试计划
    团队项目冲刺第三天进度和遇到问题
    团队项目冲刺第二天进度和问题
    博客园用户体验
    团队项目冲刺第一天进度和问题
    团队项目风险
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4734493.html
Copyright © 2011-2022 走看看