zoukankan      html  css  js  c++  java
  • 德莱联盟 计算几何 线段相交

    难度:1
     
    描述

    欢迎来到德莱联盟。。。。

    德莱文。。。

    德莱文在逃跑,卡兹克在追。。。。

    我们知道德莱文的起点和终点坐标,我们也知道卡兹克的起点和 终点坐标,问:卡兹克有可能和德莱文相遇吗?,并且保证他们走的都是直线。

     
    输入
    几组数据,一个整数T表示T组数据
    每组数据 8个实数,分别表示德莱文的起点和终点坐标,以及卡兹克的起点和终点坐标
    输出
    如果可能 输出 Interseetion,否则输出 Not Interseetion
    样例输入
    2
    -19.74 7.14 22.23 -27.45 -38.79 -5.08 47.51 34.01
    -8.61 9.91 -32.47 6.47 -3.81 -16.1 7.82 -6.37
    样例输出
    Interseetion
    Not Interseetion
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<sstream>
    #include<algorithm>
    #include<queue>
    #include<deque>
    #include<iomanip>
    #include<vector>
    #include<cmath>
    #include<map>
    #include<stack>
    #include<set>
    #include<fstream>
    #include<memory>
    #include<list>
    #include<string>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    #define MAXN 2000000003
    #define N 21
    #define MOD 1000000
    #define INF 1000000009
    //#define eps 0.00000001
    const double PI = acos(-1.0);
    double torad(double deg) { return deg / 180 * PI; }
    
    struct Point
    {
        double x, y;
        Point(double x = 0, double y = 0) :x(x), y(y) { }
    };
    
    typedef Point Vector;
    
    Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x + B.x, A.y + B.y); }
    Vector operator - (const Point& A, const Point& B) { return Vector(A.x - B.x, A.y - B.y); }
    Vector operator * (const Vector& A, double p) { return Vector(A.x*p, A.y*p); }
    Vector operator / (const Vector& A, double p) { return Vector(A.x / p, A.y / p); }
    
    bool operator < (const Point& a, const Point& b)    //结构体运算符的重载
    {
        return a.x < b.x || (a.x == b.x && a.y < b.y);
    }
    
    const double eps = 1e-8;
    int dcmp(double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
    
    bool operator == (const Point& a, const Point &b)
    {
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
    
    //基本运算:
    double dist(const Vector& A, const Vector& B) { return sqrt(pow(A.x - B.x, 2) + pow(A.y - B.y, 2)); }
    double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; }//点乘
    double Length(const Vector& A) { return sqrt(Dot(A, A)); }
    double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
    double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; }//叉乘
    double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
    
    //向量旋转 rad是弧度
    Vector Rotate(const Vector& A, double rad)
    {
        return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));
    }
    //点和直线:
    //两直线的交点
    Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w)
    {
        Vector u = P - Q; 
            double t = Cross(w, u) / Cross(v, w);
        return P + v*t;
    }
    
    //点到直线的距离
    double DistanceToLine(const Point& P, const Point& A, const Point& B)
    {
        Vector v1 = B - A, v2 = P - A;
        return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点到线段的距离
    double DistanceToSegment(const Point& P, const Point& A, const Point& B)
    {
        if (A == B) return Length(P - A);
        Vector v1 = B - A, v2 = P - A, v3 = P - B;
        if (dcmp(Dot(v1, v2)) < 0) return Length(v2);
        else if (dcmp(Dot(v1, v3)) > 0) return Length(v3);
        else return fabs(Cross(v1, v2)) / Length(v1);
    }
    
    //点在直线上的投影
    Point GetLineProjection(const Point &P, const Point &A, const Point &B)
    {
        Vector v = B - A;
        return A + v*(Dot(v, P - A) / Dot(v, v));
    }
    
    //线段相交判定
    bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2)
    {
        double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
            c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
        return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
    }
    
    
    //判断点在线段上(两个端点除外)
    bool OnSegment(const Point& p, const Point& a1, const Point& a2)
    {
        return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0;
    }
    
    int main()
    {
        Vector a, b, c, d;
        int T;
        scanf("%d", &T);
        while (T--)
        {
            cin >> a.x >> a.y >> b.x >> b.y >> c.x >> c.y >> d.x >> d.y;
            if (SegmentProperIntersection(a, b, c, d))
                printf("Interseetion
    ");
            else
                printf("Not Interseetion
    ");
        }
        return 0;
    }
  • 相关阅读:
    flink(七) 电商用户行为分析(七)订单支付实时监控之订单超时、订单交易匹配
    flink(六) 电商用户行为分析(六)恶意登录监控之连续登陆超时
    flink(五) 电商用户行为分析(五)市场营销商业指标统计分析之市场推广统计、广告点击量统计、 黑名单过滤
    flink(四) 电商用户行为分析(四)实时流量统计(二)网站独立访客数(UV)
    flink(三) 电商用户行为分析(三)实时流量统计(一)热门页面浏览量、网站总浏览量
    flink(二) 电商用户行为分析(二)实时热门商品统计(计算最热门 Top N 商品)
    flink(一) 电商用户行为分析(一)项目整体介绍
    Cause: No supported Ethernet device found + Unknown symbol in module
    vfio_enable_intx
    dpdk disable 收发 interrupt + l3fwd-power
  • 原文地址:https://www.cnblogs.com/joeylee97/p/6925005.html
Copyright © 2011-2022 走看看