A. Tree
题意
题解
代码
B. Coin
题意
给定抛一枚硬币向上的概率是$frac{q}{p}(frac{q}{p}leq frac{1}{2})$,求抛$k$次向上次数为偶数的概率。
题解
首先$res=sum_{i=0}{frac{k}{2}}{inom{k}{2i}(frac{q}{p}){2i}(1-frac{q}{p})^{k-2i}}$。
然后我们发现它其实是$f(x)=(frac{q}{p}x+
(1-frac{q}{p}))k$的偶数项之和,故$res=frac{f(-1)+f(1)}{2}=frac{1}{2}(1-(frac{p-2q}{p})k)$。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll Q = 1e9+7;
inline ll read() {
ll s = 1, x = 0; char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') s = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return s * x;
}
inline ll power(ll x, ll n) {
ll ret = 1;
while (n) {
if (n & 1) ret *= x, ret %= Q;
x *= x, x %= Q;
n >>= 1;
}
return ret;
}
int main() {
ll T = read();
while (T--) {
ll p = read(), q = read(), k = read();
printf("%lld
", ((power(p, k) + power(p - 2ll * q, k)) % Q * power(2ll, Q - 2)) % Q * power(power(p, k), Q - 2) % Q);
}
return 0;
}
C. Sum
题意
给定一个正整数$x$,求一个位数不超过$2000$的正整数$k$,使得$k imes x$的十进制位之和是$233$的倍数。
题解
我们考虑把$x$重复$233$次之后的十进制位之和一定是$233$的倍数,而$xleq 106$,只要让$k={107}+{107}2+{107}3+...+{107}{233}$即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read() {
int s = 1, x = 0; char ch = getchar();
while (ch < '0' || ch > '9') {if (ch == '-') s = -1; ch = getchar();}
while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
return s * x;
}
int main() {
int T = read();
while (T--) {
int x = read();
for (int i = 1; i <= 233; i++) printf("10000000");
printf("
");
}
return 0;
}
D. Brain-baffling Game
题意
题解
代码
E. Maximum Flow
题意
题解
代码
F. Trig Function
题意
求$cos nx$展开式中$cos^m x$项的系数。
题解
当$n$和$m$奇偶性相同时,$cos^m x$项的系数为$(-1)^{frac{n-m}{2}} imesfrac{n imes(n+m-2)!!}{m!(n-m)!!}$,除法改成乘逆元即可。
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll Q = 998244353;
inline ll power(ll x, ll n) {
ll ret = 1;
while (n) {
if (n & 1) ret *= x, ret %= Q;
x *= x, x %= Q;
n >>= 1;
}
return ret;
}
inline ll f(ll n, ll m) {
if (n < m) return 0;
if ((n % 2) ^ (m % 2) == 1) return 0;
ll sgn = ((n - m) / 2) % 2 ? -1 : 1, abs = n;
if (m == 0)
abs /= n, abs %= Q;
else {
for (ll k = n - m + 2; k <= n + m - 2; k += 2) abs *= k, abs %= Q;
for (ll k = 2; k <= m; k++) abs *= power(k, Q - 2), abs %= Q;
}
ll ret = (sgn * abs + Q) % Q;
return ret;
}
int main() {
ll n, m;
while (~scanf("%lld %lld", &n, &m)) {
printf("%lld
", f(n, m));
}
return 0;
}
G. Xor
题意
题解
代码
H. Music
题意
题解
代码
I. Barty's Computer
题意
题解
代码
J. Easy Problem
题意
题解
代码