zoukankan      html  css  js  c++  java
  • Gluon 实现 dropout 丢弃法

    http://www.mamicode.com/info-detail-2537502.html

    多层感知机中:

    技术分享图片

    hi 以 p 的概率被丢弃,以 1-p 的概率被拉伸,除以  1 - p

    技术分享图片

    import mxnet as mx
    import sys
    import os
    import time
    import gluonbook as gb
    from mxnet import autograd,init
    from mxnet import nd,gluon
    from mxnet.gluon import data as gdata,nn
    from mxnet.gluon import loss as gloss
    
    
    ‘‘‘
    # 模型参数
    num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784,10,256,256
    
    W1 = nd.random.normal(scale=0.01,shape=(num_inputs,num_hiddens1))
    b1 = nd.zeros(num_hiddens1)
    
    W2 = nd.random.normal(scale=0.01,shape=(num_hiddens1,num_hiddens2))
    b2 = nd.zeros(num_hiddens2)
    
    W3 = nd.random.normal(scale=0.01,shape=(num_hiddens2,num_outputs))
    b3 = nd.zeros(num_outputs)
    
    params = [W1,b1,W2,b2,W3,b3]
    
    for param in params:
        param.attach_grad()
    
    # 定义网络
    
    ‘‘‘
    # 读取数据
    # fashionMNIST 28*28 转为224*224
    def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
            ‘~‘, ‘.mxnet‘, ‘datasets‘, ‘fashion-mnist‘)):
        root = os.path.expanduser(root)  # 展开用户路径 ‘~‘。
        transformer = []
        if resize:
            transformer += [gdata.vision.transforms.Resize(resize)]
        transformer += [gdata.vision.transforms.ToTensor()]
        transformer = gdata.vision.transforms.Compose(transformer)
        mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
        mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
        num_workers = 0 if sys.platform.startswith(‘win32‘) else 4
        train_iter = gdata.DataLoader(
            mnist_train.transform_first(transformer), batch_size, shuffle=True,
            num_workers=num_workers)
        test_iter = gdata.DataLoader(
            mnist_test.transform_first(transformer), batch_size, shuffle=False,
            num_workers=num_workers)
        return train_iter, test_iter
    
    
    # 定义网络
    drop_prob1,drop_prob2 = 0.2,0.5
    # Gluon版
    net = nn.Sequential()
    net.add(nn.Dense(256,activation="relu"),
            nn.Dropout(drop_prob1),
            nn.Dense(256,activation="relu"),
            nn.Dropout(drop_prob2),
            nn.Dense(10)
            )
    net.initialize(init.Normal(sigma=0.01))
    
    
    
    # 训练模型
    
    def accuracy(y_hat, y):
        return (y_hat.argmax(axis=1) == y.astype(‘float32‘)).mean().asscalar()
    def evaluate_accuracy(data_iter, net):
        acc = 0
        for X, y in data_iter:
            acc += accuracy(net(X), y)
        return acc / len(data_iter)
    
    
    def train(net, train_iter, test_iter, loss, num_epochs, batch_size,
                  params=None, lr=None, trainer=None):
        for epoch in range(num_epochs):
            train_l_sum = 0
            train_acc_sum = 0
            for X, y in train_iter:
                with autograd.record():
                    y_hat = net(X)
                    l = loss(y_hat, y)
                l.backward()
                if trainer is None:
                    gb.sgd(params, lr, batch_size)
                else:
                    trainer.step(batch_size)  # 下一节将用到。
                train_l_sum += l.mean().asscalar()
                train_acc_sum += accuracy(y_hat, y)
            test_acc = evaluate_accuracy(test_iter, net)
            print(‘epoch %d, loss %.4f, train acc %.3f, test acc %.3f‘
                  % (epoch + 1, train_l_sum / len(train_iter),
                     train_acc_sum / len(train_iter), test_acc))
    
    
    num_epochs = 5
    lr = 0.5
    batch_size = 256
    loss = gloss.SoftmaxCrossEntropyLoss()
    train_iter, test_iter = load_data_fashion_mnist(batch_size)
    
    trainer = gluon.Trainer(net.collect_params(),‘sgd‘,{‘learning_rate‘:lr})
    train(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,trainer)

    技术分享图片

    Gluon 实现 dropout 丢弃法

    标签:com   24*   shuff   dom   hat   normal   sgd   rom   step   

    原文地址:https://www.cnblogs.com/TreeDream/p/10045913.html

  • 相关阅读:
    dubbo记录3(配置、高可用、原理)
    dubbo记录2(运行dubbo的三种方式、与springboot整合、SpringBoot与dubbo整合的三种方式)
    dubbo记录1( 搭建注册中心、管理控制台和监控中心,第一个案例)
    vxe-table: 一个基于 vue 的 PC 端表格组件
    rabbitmq之死信队列,延迟队列,消息可靠投递
    springboot整合rabbitmq
    rabbitmq记录(2)spring整合rabbitmq--手动模式,测试消息的持久化
    rabbitmq记录(1)安装,work模式,发布订阅模式,路由模式,topic模式,spring整合rabbitmq--自动模式
    httpclient upload file
    SpringMVC自定义注解进行参数校验(转)
  • 原文地址:https://www.cnblogs.com/jukan/p/10814806.html
Copyright © 2011-2022 走看看