zoukankan      html  css  js  c++  java
  • 算法分析结课总结动态规划

    动态规划算法首先要分析问题对象:

    1.是否有最优子结构性质。

    子结构:原问题规模变小就成为原问题的子结构。比如,矩阵链相乘问题,原问题的规模是矩阵链长度r=n,即问题规模为(i=1,j=n),i为矩阵链起点下标,j为终点下标。而原矩阵链中任意连续的长度r<n的子矩阵链,当i变大或j变小或i和j都变化时,就是子结构。再如长度分别为i和j的两个序列的最大公共子序列问题,原问题规模为(i,j),当i变小或j变小或i和j都变小时,这时的子问题就是子结构。

    最优子结构性质:原问题的最优解包含子问题的最优解。这种性质成为最优子结构性质。

    2.最常见的动态规划问题的子结构最优解是用矩阵,即二维数组来存储。

    3.如果存在最优子结构性质,则小子结构和大子结构之间存在递推关系。

    4.动态规划算法的缺点是在输出最优解的路径时,只输出最后一个最优解的路径。但是最优解可能并不唯一,如果有多个最优解,则前边的解的路径不能被输出。

  • 相关阅读:
    Android ImageView设置图片原理(下)
    C++ 虚函数表 多重继承
    C++ 虚函数表 单继承
    私有继承
    内联函数和宏定义的区别
    #pragma pack(x) CPU对齐
    static 变量(静态变量)
    C++ 中const作用
    如何连接宏参数
    几种常见容器比较和分析 hashmap, map, vector, list ...hash table
  • 原文地址:https://www.cnblogs.com/kevinGaoblog/p/2490911.html
Copyright © 2011-2022 走看看