zoukankan      html  css  js  c++  java
  • ACM-ICPC 2018 焦作赛区网络预赛

    ACM-ICPC 2018 焦作赛区网络预赛

    (A. Magic Mirror)
    签到

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    int main(){
        int T;
        for(cin >> T; T; T--){
            string s;
            cin >> s;
            for(int i = 0; i < (int)s.length(); i++) s[i] = tolower(s[i]);
            if(s=="jessie") cout << "Good guy!" << endl;
            else cout << "Dare you say that again?" << endl;
        }
        return 0;
    }
    

    (B. Mathematical Curse)
    (dp[i][j])表示当前到第(i)个巫师,消除标记到(j)的最大值和最小值
    因为有正有负,两个负数相乘变成正数可能变化比较大,所以要存正负的极值

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1111;
    using LL = int_fast64_t;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    LL ope(LL x, char op, LL y){
        if(op=='-') return x - y;
        if(op=='+') return x + y;
        if(op=='*') return x * y;
        return x / y;
    }
    char s[MAXN];
    LL f[2][MAXN][6];
    int n,m,A[MAXN],K;
    void solve(){
        cin >> n >> m >> K;
        memset(f[0],0x3f,sizeof(f[0]));
        memset(f[1],-0x3f,sizeof(f[1]));
        for(int i = 0; i <= n; i++) f[0][i][0] = f[1][i][0] = K;
        for(int i = 1; i <= n; i++) cin >> A[i];
        cin >> (s+1);
        for(int i = 1; i <= n; i++) for(int j = 1; j <= min(i,m); j++){
            f[0][i][j] = f[0][i-1][j];
            f[1][i][j] = f[1][i-1][j];
            if(f[0][i-1][j-1]!=INF){
                f[0][i][j] = min(f[0][i][j],ope(f[0][i-1][j-1],s[j],A[i]));
                f[1][i][j] = max(f[1][i][j],ope(f[0][i-1][j-1],s[j],A[i]));
            }
            if(f[1][i-1][j-1]!=-INF){
                f[0][i][j] = min(f[0][i][j],ope(f[1][i-1][j-1],s[j],A[i]));
                f[1][i][j] = max(f[1][i][j],ope(f[1][i-1][j-1],s[j],A[i]));
            }
        }
        LL ret = -INF;
        for(int i = m; i <= n; i++) ret = max(ret,f[1][i][m]);
        cout << ret << endl;
    }
    int main(){
        int T;
        ____();
        for(cin >> T; T; T--) solve();    
        return 0;
    }
    

    (C. Password)

    (D. Sequence)

    (E. Jiu Yuan Wants to Eat)
    如果只有(1,2,4)操作那就是树剖的模板题了,现在多了一个操作(3)
    其实还是模板题,因为是对(2^{64})取模,那么每个数按位取反就相当于每个数被(2^{64}-1)减,那就相当于每个数先减去(2^{64}-1)然后再取负,那么这题就出来了

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    using ull = uint_fast64_t;
    const int MAXN = 1e5+7;
    struct SegmentTree{
        ull w[MAXN<<2],lmul[MAXN<<2],ladd[MAXN<<2];
        int l[MAXN<<2],r[MAXN<<2];
        #define ls(rt) rt << 1
        #define rs(rt) rt << 1 | 1
        #define pushup(rt) w[rt] = w[ls(rt)] + w[rs(rt)]
        void build(int L, int R, int rt = 1){
            l[rt] = L, r[rt] = R; w[rt] = 0ull;
            lmul[rt] = 1ull; ladd[rt] = 0ull;
            if(L+1==R) return;
            int mid = (L + R) >> 1;
            build(L,mid,ls(rt)); build(mid,R,rs(rt));
        }
        void pushdown(int rt){
            if(lmul[rt]!=1ull){
                lmul[ls(rt)] *= lmul[rt]; ladd[ls(rt)] *= lmul[rt]; w[ls(rt)] *= lmul[rt];
                lmul[rs(rt)] *= lmul[rt]; ladd[rs(rt)] *= lmul[rt]; w[rs(rt)] *= lmul[rt];
                lmul[rt] = 1ull;
            }
            if(ladd[rt]){
                ladd[ls(rt)] += ladd[rt];
                ladd[rs(rt)] += ladd[rt];
                w[ls(rt)] += ladd[rt] * (r[ls(rt)] - l[ls(rt)]);
                w[rs(rt)] += ladd[rt] * (r[rs(rt)] - l[rs(rt)]);
                ladd[rt] = 0ull;
            }
        }
        void update(int L, int R, int op, ull x, int rt = 1){
            if(l[rt]>=R or L>=r[rt]) return;
            if(L<=l[rt] and r[rt]<=R){
                if(op==3){
                    w[rt] -= -1ull * (r[rt] - l[rt]);
                    ladd[rt] -= -1ull;
                    w[rt] = -w[rt], lmul[rt] = -lmul[rt], ladd[rt] = -ladd[rt];
                }
                else if(op==2) w[rt] += x * (r[rt] - l[rt]), ladd[rt] += x;
                else if(op==1) w[rt] *= x, ladd[rt] *= x, lmul[rt] *= x;
                return;
            }
            pushdown(rt);
            update(L,R,op,x,ls(rt)); update(L,R,op,x,rs(rt));
            pushup(rt);
        }
        ull qsum(int L, int R, int rt = 1){
            if(l[rt]>=R or L>=r[rt]) return 0;
            if(L<=l[rt] and r[rt]<=R) return w[rt];
            pushdown(rt);
            return qsum(L,R,ls(rt)) + qsum(L,R,rs(rt));
        }
    }ST;
    int n,m,dfn[MAXN],num,tp[MAXN],sz[MAXN],son[MAXN],depth[MAXN],par[MAXN];
    vector<int> G[MAXN];
    void dfs1(int u){
        depth[u] = depth[par[u]] + 1;
        sz[u] = 1; son[u] = 0;
        for(int v : G[u]){
            dfs1(v);
            sz[u] += sz[v];
            if(sz[son[u]]<sz[v]) son[u] = v;
        }
    }
    void dfs2(int u, int top){
        tp[u] = top;
        dfn[u] = ++num;
        if(son[u]) dfs2(son[u],top);
        for(int v : G[u]){
            if(v==son[u]) continue;
            dfs2(v,v);
        }
    }
    void modify(int u, int v, int op, ull x = 0ull){
        while(tp[u]!=tp[v]){
            if(depth[tp[u]]<depth[tp[v]]) swap(u,v);
            ST.update(dfn[tp[u]],dfn[u]+1,op,x);
            u = par[tp[u]];
        }
        if(depth[u]<depth[v]) swap(u,v);
        ST.update(dfn[v],dfn[u]+1,op,x);
    }
    ull qsum(int u, int v){
        ull ret = 0;
        while(tp[u]!=tp[v]){
            if(depth[tp[u]]<depth[tp[v]]) swap(u,v);
            ret += ST.qsum(dfn[tp[u]],dfn[u]+1);
            u = par[tp[u]];
        }
        if(depth[u]<depth[v]) swap(u,v);
        return ret + ST.qsum(dfn[v],dfn[u]+1);
    }
    int main(){
        while(scanf("%d",&n)!=EOF){
            num = 0;
            for(int i = 1; i <= n; i++) G[i].clear();
            for(int i = 2; i <= n; i++){
                scanf("%d",&par[i]);
                G[par[i]].push_back(i);
            }
            dfs1(1); dfs2(1,1);
            ST.build(1,n+1);
            scanf("%d",&m);
            while(m--){
                int op; scanf("%d",&op);
                if(op<=2){
                    int u, v; ull x;
                    scanf("%d %d %llu",&u,&v,&x);
                    modify(u,v,op,x);
                }
                else if(op==3){
                    int u, v;
                    scanf("%d %d",&u,&v);
                    modify(u,v,op);
                }
                else{
                    int u, v;
                    scanf("%d %d",&u,&v);
                    printf("%llu
    ",qsum(u,v));
                }
            }
        }
        return 0;
    }
    

    (F. Modular Production Line)
    K次区间覆盖问题,边权取负最小费用流

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 1111;
    const int INF = 0x3f3f3f3f;
    #define S 0
    #define T MAXN - 1
    int k,m,n,flow[MAXN],dist[MAXN],pre[MAXN],preid[MAXN],vis[MAXN];
    pair<pair<int,int>,int> work[MAXN];
    struct EDGE{
        int to,cap,fee,rev;
        EDGE(){}
        EDGE(int _to, int _cap, int _fee, int _rev){
            to = _to; cap = _cap;
            fee = _fee; rev = _rev;
        }
    };
    vector<EDGE> G[MAXN];
    void ADDEDGE(int u, int v, int cap, int fee){
        G[u].emplace_back(EDGE(v,cap,fee,(int)G[v].size()));
        G[v].emplace_back(EDGE(u,0,-fee,(int)G[u].size()-1));
    }
    void build(){
        for(int i = 0; i < MAXN; i++) G[i].clear();
        for(int i = 0; i < n; i++) ADDEDGE(i,i+1,k,0);
        ADDEDGE(n,T,k,0);
        for(int i = 1; i <= m; i++) ADDEDGE(work[i].first.first,work[i].first.second,1,-work[i].second);
    }
    bool spfa(){
        memset(dist,0x3f,sizeof(dist));
        dist[S] = 0;
        flow[S] = INF;
        memset(vis,0,sizeof(vis));
        queue<int> que;
        que.push(S);
        while(!que.empty()){
            int u = que.front();
            que.pop();
            vis[u] = 0;
            for(int i = 0; i < (int)G[u].size(); i++){
                auto e = G[u][i];
                if(!e.cap or dist[e.to]<=dist[u]+e.fee) continue;
                dist[e.to] = dist[u] + e.fee;
                flow[e.to] = min(e.cap,flow[u]);
                pre[e.to] = u; preid[e.to] = i;
                if(!vis[e.to]){
                    vis[e.to] = 1;
                    que.push(e.to);
                }
            }
        }
        return dist[T]!=INF;
    }
    int mcmf(){
        int cost = 0;
        while(spfa()){
            int u = T;
            cost += dist[T] * flow[T];
            while(u!=S){
                int p = pre[u], id = preid[u];
                G[p][id].cap -= flow[T];
                G[u][G[p][id].rev].cap += flow[T];
                u = pre[u];
            }
        }
        return cost;
    }
    void solve(){
        cin >> n >> k >> m;
        vector<int> vec;
        for(int i = 1; i <= m; i++){
            cin >> work[i].first.first >> work[i].first.second >> work[i].second;
            work[i].first.second++;
            vec.push_back(work[i].first.first); vec.push_back(work[i].first.second);
        }
        sort(vec.begin(),vec.end());
        vec.erase(unique(vec.begin(),vec.end()),vec.end());
        for(int i = 1; i <= m; i++){
            work[i].first.first = lower_bound(vec.begin(),vec.end(),work[i].first.first) - vec.begin() + 1;
            work[i].first.second = lower_bound(vec.begin(),vec.end(),work[i].first.second) - vec.begin() + 1;
        }
        n = vec.size();
        build();
        cout << -mcmf() << endl;
    }
    int main(){
        int t;
        ____();
        for(cin >> t; t; t--) solve();    
        return 0;
    }
    
    

    (G. Give Candies)
    计算(2^n),利用费马小定理降幂,然后快速幂

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    void ____(){ ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); }
    const int MAXN = 2e5+7;
    typedef long long int LL;
    const LL MOD = 1e9+7;
    char s[MAXN];
    LL qpow(LL a, LL b){
        LL ret = 1;
        while(b){
            if(b&1) ret = ret * a % MOD;
            b >>= 1;
            a = a * a % MOD;
        }
        return ret;
    }
    void solve(){
        cin >> s;
        LL pw = 0;
        for(int i = 0, len = strlen(s); i < len; i++) pw = (pw*10+s[i]-'0')%(MOD-1);
        pw = (pw-1+MOD)%MOD;
        cout << qpow(2,pw) << endl;
    }
    int main(){
        ____();
        int T;
        for(cin >> T; T; T--) solve();
        return 0;
    }
    

    (H. String and Times)
    SAM,找(right)集合大小在([L,R])的子串有多少个

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    const int MAXN = 4e5+7;
    struct SAM{
        int tot,ch[MAXN][26],link[MAXN],last,cnt[MAXN],c[MAXN],sa[MAXN],len[MAXN];
        void clear(){ last = tot = 1; memset(ch[tot],0,sizeof(ch[tot])); link[1] = 0; cnt[1] = 0; }
        int newnode(){ tot++; memset(ch[tot],0,sizeof(ch[tot])); cnt[tot] = 0; return tot; }
        void extend(char car){
            int c = car - 'A';
            int np = newnode(), p = last;
            len[np] = len[last] + 1; cnt[np] = 1;
            while(p and !ch[p][c]){
                ch[p][c] = np;
                p = link[p];
            }
            if(!p) link[np] = 1;
            else{
                int q = ch[p][c];
                if(len[p]+1==len[q]) link[np] = q;
                else{
                    int clone = newnode();
                    link[clone] = link[q];
                    memcpy(ch[clone],ch[q],sizeof(ch[q]));
                    len[clone] = len[p] + 1;
                    while(p and ch[p][c]==q){
                        ch[p][c] = clone;
                        p = link[p];
                    }
                    link[q] = link[np] = clone;
                }
            }
            last = np;
        }
        long long int query(int L, int R){
            for(int i = 0; i <= tot; i++) c[i] = 0;
            for(int i = 1; i <= tot; i++) c[len[i]]++;
            for(int i = 1; i <= tot; i++) c[i] += c[i-1];
            for(int i = tot; i >= 1; i--) sa[c[len[i]]--] = i;
            for(int i = tot; i >= 1; i--){
                int u = sa[i];
                cnt[link[u]] += cnt[u];
            }
            long long int ret = 0;
            for(int i = 2; i <= tot; i++) if(cnt[i]>=L and cnt[i]<=R) ret += len[i] - len[link[i]];
            return ret;
        }
    }sam;
    char s[MAXN];
    int main(){
        while(scanf("%s",s)!=EOF){
            int l, r;
            scanf("%d %d",&l,&r);
            sam.clear();
            for(int i = 0, len = strlen(s); i < len; i++) sam.extend(s[i]);
            printf("%lld
    ",sam.query(l,r));
        }
        return 0;
    }
    

    (I. Save the Room)
    签到

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    int main(){
        int a,b,c;
        while(cin >> a >> b >> c){
            if((a&1) and (b&1) and (c&1)) cout << "No" << endl;
            else cout << "Yes" << endl;
        }
        return 0;
    }
    

    (J. Participate in E-sports)

    (K. Transport Ship)
    二进制拆解+完全背包

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
    typedef long long int LL;
    const int MAXN = 1e4+7;
    const LL MOD = 1e9+7;
    int n,q,Q[MAXN],f[MAXN];
    vector<int> vec;
    void solve(){
        scanf("%d %d",&n,&q);
        vec.clear();
        for(int i = 1; i <= n; i++){
            int v, c;
            scanf("%d %d",&v,&c);
            c = (1<<c) - 1;
            for(int bit = 0; c&(1<<bit); bit++) vec.emplace_back(v*(1<<bit));
        }
        memset(f,255,sizeof(f));
        for(int i = 1; i <= q; i++) scanf("%d",&Q[i]);
        int maxx = *max_element(Q+1,Q+1+q);
        f[0] = 1;
        for(int p : vec){
            for(int i = maxx; i >= p; i--){
                if(f[i-p]!=-1){
                    if(f[i]==-1) f[i] = f[i-p];
                    else f[i] = (f[i]+f[i-p])%MOD;
                }
            }
        }
        for(int i = 1; i <= q; i++) printf("%d
    ",(f[Q[i]]==-1?0:f[Q[i]]));
    }
    int main(){
        int T;
        for(scanf("%d",&T); T; T--) solve();
        return 0;
    }
    

    (L. Poor God Water)
    矩阵快速幂优化DP
    把三种东西看作(A,B,C),然后两两组合,构造一个(9cdot 9)的矩阵来求解

    //#pragma GCC optimize("O3")
    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<bits/stdc++.h>
    using namespace std;
    void ____(){ ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); }
    typedef long long int LL;
    const LL MOD = 1e9+7;
    struct Matrix{
        LL m[9][9];
        Matrix(int tag = 0){
            for(int i = 0; i < 9; i++) for(int j = 0; j < 9; j++){
                if(i==j) m[i][j] = tag;
                else m[i][j] = 0;
            }
        }
        void set(int x, int y){ m[x][y] = 1; }
        Matrix operator * (const Matrix rhs){
            Matrix ret(0);
            for(int i = 0; i < 9; i++) for(int j = 0; j < 9; j++){
                for(int k = 0; k < 9; k++) ret.m[i][j] = (ret.m[i][j] + m[i][k] * rhs.m[k][j]) %MOD;
            }
            return ret;
        }
    };
    Matrix qpow(Matrix A, LL b){
        Matrix ret(1);
        while(b){
            if(b&1) ret = ret * A;
            b >>= 1;
            A = A * A;
        }
        return ret;
    }
    LL n;
    Matrix init(0);
    void solve(){
        cin >> n;
        if(n==1){
            cout << 3 << endl;
            return;
        }
        Matrix ret = qpow(init,n-2);
        LL res = 0;
        for(int i = 0; i < 9; i++) for(int j = 0; j < 9; j++) res = (res + ret.m[i][j]) % MOD;
        cout << res << endl;
    }
    int main(){
        ____();
        init.set(0,1); init.set(0,2);
        init.set(1,3); init.set(1,4);
        init.set(2,6); init.set(2,7); init.set(2,8);
        init.set(3,0); init.set(3,2);
        init.set(4,3); init.set(4,5);
        init.set(5,6); init.set(5,8);
        init.set(6,0); init.set(6,1); init.set(6,2);
        init.set(7,4); init.set(7,5);
        init.set(8,6); init.set(8,7);
        int T; for(cin >> T; T; T--) solve();    
        return 0;
    }
    
  • 相关阅读:
    EF写in
    1707. [Usaco2007 Nov]tanning分配防晒霜
    BZOJ 1706. [usaco2007 Nov]relays 奶牛接力跑
    1705. [Usaco2007 Nov]Telephone Wire 架设电话线
    BZOJ1704. [Usaco2007 Mar]Face The Right Way 自动转身机
    Codeforces Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)
    BZOJ1702. [Usaco2007 Mar]Gold Balanced Lineup 平衡的队列
    P2876 [USACO07JAN]解决问题Problem Solving
    BZOJ 1908. Pku2054 UVA1205 Color a Tree
    P4280 [AHOI2008]逆序对
  • 原文地址:https://www.cnblogs.com/kikokiko/p/12747896.html
Copyright © 2011-2022 走看看