#include<iostream> #include<cstring> #include<cstdio> #include<vector> #include<queue> using namespace std; #define ll long long #define maxn 100050 int ok(ll n){ for(ll i=n/10*10;i<=n;i++){ ll sum = 0,tmp = i; while(tmp){ sum += tmp%10; tmp /= 10; } if(sum%10 == 0){ return 1; } } return 0; } ll f(ll n){ if(ok(n)){ return (n/10) + 1; } return n/10; } int main(){ int T; cin >> T; for(int t=1;t<=T;t++){ ll n,m; cin >> n >> m; printf("Case #%d: %lld ",t,f(m)-f(n-1)); } return 0; }
Good Numbers
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5193 Accepted Submission(s): 1642
Problem Description
If we sum up every digit of a number and the result can be exactly divided by 10, we say this number is a good number. You are required to count the number of good numbers in the range from A to B, inclusive.
Input
The first line has a number T (T <= 10000) , indicating the number of test cases. Each test case comes with a single line with two numbers A and B (0 <= A <= B <= 1018).
Output
For test case X, output "Case #X: " first, then output the number of good numbers in a single line.
Sample Input
2
1 10
1 20
Sample Output
Case #1: 0
Case #2: 1
Hint
The answer maybe very large, we recommend you to use long long instead of int.Source
发现: 0-10 1
0-100 10
0-1000 100
0-990 99
0-992 100
0-997 100
基本规律为 n/10 + (1或0)
加1的情况为:n/10*10 到 n 有满足条件的 比如:997: 99 + (990到997是否有满足条件的,如果有则加1)