zoukankan      html  css  js  c++  java
  • python实现DES加密算法和3DES加密算法

    pyDes.py

    #############################################################################
    #                 Documentation                    #
    #############################################################################
    
    # Author:   Todd Whiteman
    # Date:     16th March, 2009
    # Verion:   2.0.0
    # License:  Public Domain - free to do as you wish
    # Homepage: http://twhiteman.netfirms.com/des.html
    #
    # This is a pure python implementation of the DES encryption algorithm.
    # It's pure python to avoid portability issues, since most DES 
    # implementations are programmed in C (for performance reasons).
    #
    # Triple DES class is also implemented, utilising the DES base. Triple DES
    # is either DES-EDE3 with a 24 byte key, or DES-EDE2 with a 16 byte key.
    #
    # See the README.txt that should come with this python module for the
    # implementation methods used.
    #
    # Thanks to:
    #  * David Broadwell for ideas, comments and suggestions.
    #  * Mario Wolff for pointing out and debugging some triple des CBC errors.
    #  * Santiago Palladino for providing the PKCS5 padding technique.
    #  * Shaya for correcting the PAD_PKCS5 triple des CBC errors.
    #
    """A pure python implementation of the DES and TRIPLE DES encryption algorithms.
    
    Class initialization
    --------------------
    pyDes.des(key, [mode], [IV], [pad], [padmode])
    pyDes.triple_des(key, [mode], [IV], [pad], [padmode])
    
    key     -> Bytes containing the encryption key. 8 bytes for DES, 16 or 24 bytes
           for Triple DES
    mode    -> Optional argument for encryption type, can be either
           pyDes.ECB (Electronic Code Book) or pyDes.CBC (Cypher Block Chaining)
    IV      -> Optional Initial Value bytes, must be supplied if using CBC mode.
           Length must be 8 bytes.
    pad     -> Optional argument, set the pad character (PAD_NORMAL) to use during
           all encrypt/decrpt operations done with this instance.
    padmode -> Optional argument, set the padding mode (PAD_NORMAL or PAD_PKCS5)
           to use during all encrypt/decrpt operations done with this instance.
    
    I recommend to use PAD_PKCS5 padding, as then you never need to worry about any
    padding issues, as the padding can be removed unambiguously upon decrypting
    data that was encrypted using PAD_PKCS5 padmode.
    
    Common methods
    --------------
    encrypt(data, [pad], [padmode])
    decrypt(data, [pad], [padmode])
    
    data    -> Bytes to be encrypted/decrypted
    pad     -> Optional argument. Only when using padmode of PAD_NORMAL. For
           encryption, adds this characters to the end of the data block when
           data is not a multiple of 8 bytes. For decryption, will remove the
           trailing characters that match this pad character from the last 8
           bytes of the unencrypted data block.
    padmode -> Optional argument, set the padding mode, must be one of PAD_NORMAL
           or PAD_PKCS5). Defaults to PAD_NORMAL.
          
    
    Example
    -------
    from pyDes import *
    
    data = "Please encrypt my data"
    k = des("DESCRYPT", CBC, "", pad=None, padmode=PAD_PKCS5)
    # For Python3, you'll need to use bytes, i.e.:
    #   data = b"Please encrypt my data"
    #   k = des(b"DESCRYPT", CBC, b"", pad=None, padmode=PAD_PKCS5)
    d = k.encrypt(data)
    print "Encrypted: %r" % d
    print "Decrypted: %r" % k.decrypt(d)
    assert k.decrypt(d, padmode=PAD_PKCS5) == data
    
    
    See the module source (pyDes.py) for more examples of use.
    You can also run the pyDes.py file without and arguments to see a simple test.
    
    Note: This code was not written for high-end systems needing a fast
          implementation, but rather a handy portable solution with small usage.
    
    """
    
    import sys
    
    # _pythonMajorVersion is used to handle Python2 and Python3 differences.
    _pythonMajorVersion = sys.version_info[0]
    
    # Modes of crypting / cyphering
    ECB =    0
    CBC =    1
    
    # Modes of padding
    PAD_NORMAL = 1
    PAD_PKCS5 = 2
    
    # PAD_PKCS5: is a method that will unambiguously remove all padding
    #            characters after decryption, when originally encrypted with
    #            this padding mode.
    # For a good description of the PKCS5 padding technique, see:
    # http://www.faqs.org/rfcs/rfc1423.html
    
    # The base class shared by des and triple des.
    class _baseDes(object):
        def __init__(self, mode=ECB, IV=None, pad=None, padmode=PAD_NORMAL):
            if IV:
                IV = self._guardAgainstUnicode(IV)
            if pad:
                pad = self._guardAgainstUnicode(pad)
            self.block_size = 8
            # Sanity checking of arguments.
            if pad and padmode == PAD_PKCS5:
                raise ValueError("Cannot use a pad character with PAD_PKCS5")
            if IV and len(IV) != self.block_size:
                raise ValueError("Invalid Initial Value (IV), must be a multiple of " + str(self.block_size) + " bytes")
    
            # Set the passed in variables
            self._mode = mode
            self._iv = IV
            self._padding = pad
            self._padmode = padmode
    
        def getKey(self):
            """getKey() -> bytes"""
            return self.__key
    
        def setKey(self, key):
            """Will set the crypting key for this object."""
            key = self._guardAgainstUnicode(key)
            self.__key = key
    
        def getMode(self):
            """getMode() -> pyDes.ECB or pyDes.CBC"""
            return self._mode
    
        def setMode(self, mode):
            """Sets the type of crypting mode, pyDes.ECB or pyDes.CBC"""
            self._mode = mode
    
        def getPadding(self):
            """getPadding() -> bytes of length 1. Padding character."""
            return self._padding
    
        def setPadding(self, pad):
            """setPadding() -> bytes of length 1. Padding character."""
            if pad is not None:
                pad = self._guardAgainstUnicode(pad)
            self._padding = pad
    
        def getPadMode(self):
            """getPadMode() -> pyDes.PAD_NORMAL or pyDes.PAD_PKCS5"""
            return self._padmode
            
        def setPadMode(self, mode):
            """Sets the type of padding mode, pyDes.PAD_NORMAL or pyDes.PAD_PKCS5"""
            self._padmode = mode
    
        def getIV(self):
            """getIV() -> bytes"""
            return self._iv
    
        def setIV(self, IV):
            """Will set the Initial Value, used in conjunction with CBC mode"""
            if not IV or len(IV) != self.block_size:
                raise ValueError("Invalid Initial Value (IV), must be a multiple of " + str(self.block_size) + " bytes")
            IV = self._guardAgainstUnicode(IV)
            self._iv = IV
    
        def _padData(self, data, pad, padmode):
            # Pad data depending on the mode
            if padmode is None:
                # Get the default padding mode.
                padmode = self.getPadMode()
            if pad and padmode == PAD_PKCS5:
                raise ValueError("Cannot use a pad character with PAD_PKCS5")
    
            if padmode == PAD_NORMAL:
                if len(data) % self.block_size == 0:
                    # No padding required.
                    return data
    
                if not pad:
                    # Get the default padding.
                    pad = self.getPadding()
                if not pad:
                    raise ValueError("Data must be a multiple of " + str(self.block_size) + " bytes in length. Use padmode=PAD_PKCS5 or set the pad character.")
                data += (self.block_size - (len(data) % self.block_size)) * pad
            
            elif padmode == PAD_PKCS5:
                pad_len = 8 - (len(data) % self.block_size)
                if _pythonMajorVersion < 3:
                    data += pad_len * chr(pad_len)
                else:
                    data += bytes([pad_len] * pad_len)
    
            return data
    
        def _unpadData(self, data, pad, padmode):
            # Unpad data depending on the mode.
            if not data:
                return data
            if pad and padmode == PAD_PKCS5:
                raise ValueError("Cannot use a pad character with PAD_PKCS5")
            if padmode is None:
                # Get the default padding mode.
                padmode = self.getPadMode()
    
            if padmode == PAD_NORMAL:
                if not pad:
                    # Get the default padding.
                    pad = self.getPadding()
                if pad:
                    data = data[:-self.block_size] + 
                           data[-self.block_size:].rstrip(pad)
    
            elif padmode == PAD_PKCS5:
                if _pythonMajorVersion < 3:
                    pad_len = ord(data[-1])
                else:
                    pad_len = data[-1]
                data = data[:-pad_len]
    
            return data
    
        def _guardAgainstUnicode(self, data):
            # Only accept byte strings or ascii unicode values, otherwise
            # there is no way to correctly decode the data into bytes.
            if _pythonMajorVersion < 3:
                if isinstance(data, unicode):
                    raise ValueError("pyDes can only work with bytes, not Unicode strings.")
            else:
                if isinstance(data, str):
                    # Only accept ascii unicode values.
                    try:
                        return data.encode('ascii')
                    except UnicodeEncodeError:
                        pass
                    raise ValueError("pyDes can only work with encoded strings, not Unicode.")
            return data
    
    #############################################################################
    #                     DES                        #
    #############################################################################
    class des(_baseDes):
        """DES encryption/decrytpion class
    
        Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes.
    
        pyDes.des(key,[mode], [IV])
    
        key  -> Bytes containing the encryption key, must be exactly 8 bytes
        mode -> Optional argument for encryption type, can be either pyDes.ECB
            (Electronic Code Book), pyDes.CBC (Cypher Block Chaining)
        IV   -> Optional Initial Value bytes, must be supplied if using CBC mode.
            Must be 8 bytes in length.
        pad  -> Optional argument, set the pad character (PAD_NORMAL) to use
            during all encrypt/decrpt operations done with this instance.
        padmode -> Optional argument, set the padding mode (PAD_NORMAL or
            PAD_PKCS5) to use during all encrypt/decrpt operations done
            with this instance.
        """
    
    
        # Permutation and translation tables for DES
        __pc1 = [56, 48, 40, 32, 24, 16,  8,
              0, 57, 49, 41, 33, 25, 17,
              9,  1, 58, 50, 42, 34, 26,
             18, 10,  2, 59, 51, 43, 35,
             62, 54, 46, 38, 30, 22, 14,
              6, 61, 53, 45, 37, 29, 21,
             13,  5, 60, 52, 44, 36, 28,
             20, 12,  4, 27, 19, 11,  3
        ]
    
        # number left rotations of pc1
        __left_rotations = [
            1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
        ]
    
        # permuted choice key (table 2)
        __pc2 = [
            13, 16, 10, 23,  0,  4,
             2, 27, 14,  5, 20,  9,
            22, 18, 11,  3, 25,  7,
            15,  6, 26, 19, 12,  1,
            40, 51, 30, 36, 46, 54,
            29, 39, 50, 44, 32, 47,
            43, 48, 38, 55, 33, 52,
            45, 41, 49, 35, 28, 31
        ]
    
        # initial permutation IP
        __ip = [57, 49, 41, 33, 25, 17, 9,  1,
            59, 51, 43, 35, 27, 19, 11, 3,
            61, 53, 45, 37, 29, 21, 13, 5,
            63, 55, 47, 39, 31, 23, 15, 7,
            56, 48, 40, 32, 24, 16, 8,  0,
            58, 50, 42, 34, 26, 18, 10, 2,
            60, 52, 44, 36, 28, 20, 12, 4,
            62, 54, 46, 38, 30, 22, 14, 6
        ]
    
        # Expansion table for turning 32 bit blocks into 48 bits
        __expansion_table = [
            31,  0,  1,  2,  3,  4,
             3,  4,  5,  6,  7,  8,
             7,  8,  9, 10, 11, 12,
            11, 12, 13, 14, 15, 16,
            15, 16, 17, 18, 19, 20,
            19, 20, 21, 22, 23, 24,
            23, 24, 25, 26, 27, 28,
            27, 28, 29, 30, 31,  0
        ]
    
        # The (in)famous S-boxes
        __sbox = [
            # S1
            [14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
             0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
             4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
             15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13],
    
            # S2
            [15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
             3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
             0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
             13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9],
    
            # S3
            [10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
             13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
             13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
             1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12],
    
            # S4
            [7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
             13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
             10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
             3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14],
    
            # S5
            [2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
             14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
             4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
             11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3],
    
            # S6
            [12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
             10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
             9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
             4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13],
    
            # S7
            [4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
             13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
             1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
             6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12],
    
            # S8
            [13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
             1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
             7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
             2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11],
        ]
    
    
        # 32-bit permutation function P used on the output of the S-boxes
        __p = [
            15, 6, 19, 20, 28, 11,
            27, 16, 0, 14, 22, 25,
            4, 17, 30, 9, 1, 7,
            23,13, 31, 26, 2, 8,
            18, 12, 29, 5, 21, 10,
            3, 24
        ]
    
        # final permutation IP^-1
        __fp = [
            39,  7, 47, 15, 55, 23, 63, 31,
            38,  6, 46, 14, 54, 22, 62, 30,
            37,  5, 45, 13, 53, 21, 61, 29,
            36,  4, 44, 12, 52, 20, 60, 28,
            35,  3, 43, 11, 51, 19, 59, 27,
            34,  2, 42, 10, 50, 18, 58, 26,
            33,  1, 41,  9, 49, 17, 57, 25,
            32,  0, 40,  8, 48, 16, 56, 24
        ]
    
        # Type of crypting being done
        ENCRYPT =    0x00
        DECRYPT =    0x01
    
        # Initialisation
        def __init__(self, key, mode=ECB, IV=None, pad=None, padmode=PAD_NORMAL):
            # Sanity checking of arguments.
            if len(key) != 8:
                raise ValueError("Invalid DES key size. Key must be exactly 8 bytes long.")
            _baseDes.__init__(self, mode, IV, pad, padmode)
            self.key_size = 8
    
            self.L = []
            self.R = []
            self.Kn = [ [0] * 48 ] * 16    # 16 48-bit keys (K1 - K16)
            self.final = []
    
            self.setKey(key)
    
        def setKey(self, key):
            """Will set the crypting key for this object. Must be 8 bytes."""
            _baseDes.setKey(self, key)
            self.__create_sub_keys()
    
        def __String_to_BitList(self, data):
            """Turn the string data, into a list of bits (1, 0)'s"""
            if _pythonMajorVersion < 3:
                # Turn the strings into integers. Python 3 uses a bytes
                # class, which already has this behaviour.
                data = [ord(c) for c in data]
            l = len(data) * 8
            result = [0] * l
            pos = 0
            for ch in data:
                i = 7
                while i >= 0:
                    if ch & (1 << i) != 0:
                        result[pos] = 1
                    else:
                        result[pos] = 0
                    pos += 1
                    i -= 1
    
            return result
    
        def __BitList_to_String(self, data):
            """Turn the list of bits -> data, into a string"""
            result = []
            pos = 0
            c = 0
            while pos < len(data):
                c += data[pos] << (7 - (pos % 8))
                if (pos % 8) == 7:
                    result.append(c)
                    c = 0
                pos += 1
    
            if _pythonMajorVersion < 3:
                return ''.join([ chr(c) for c in result ])
            else:
                return bytes(result)
    
        def __permutate(self, table, block):
            """Permutate this block with the specified table"""
            return list(map(lambda x: block[x], table))
        
        # Transform the secret key, so that it is ready for data processing
        # Create the 16 subkeys, K[1] - K[16]
        def __create_sub_keys(self):
            """Create the 16 subkeys K[1] to K[16] from the given key"""
            key = self.__permutate(des.__pc1, self.__String_to_BitList(self.getKey()))
            i = 0
            # Split into Left and Right sections
            self.L = key[:28]
            self.R = key[28:]
            while i < 16:
                j = 0
                # Perform circular left shifts
                while j < des.__left_rotations[i]:
                    self.L.append(self.L[0])
                    del self.L[0]
    
                    self.R.append(self.R[0])
                    del self.R[0]
    
                    j += 1
    
                # Create one of the 16 subkeys through pc2 permutation
                self.Kn[i] = self.__permutate(des.__pc2, self.L + self.R)
    
                i += 1
    
        # Main part of the encryption algorithm, the number cruncher :)
        def __des_crypt(self, block, crypt_type):
            """Crypt the block of data through DES bit-manipulation"""
            block = self.__permutate(des.__ip, block)
            self.L = block[:32]
            self.R = block[32:]
    
            # Encryption starts from Kn[1] through to Kn[16]
            if crypt_type == des.ENCRYPT:
                iteration = 0
                iteration_adjustment = 1
            # Decryption starts from Kn[16] down to Kn[1]
            else:
                iteration = 15
                iteration_adjustment = -1
    
            i = 0
            while i < 16:
                # Make a copy of R[i-1], this will later become L[i]
                tempR = self.R[:]
    
                # Permutate R[i - 1] to start creating R[i]
                self.R = self.__permutate(des.__expansion_table, self.R)
    
                # Exclusive or R[i - 1] with K[i], create B[1] to B[8] whilst here
                self.R = list(map(lambda x, y: x ^ y, self.R, self.Kn[iteration]))
                B = [self.R[:6], self.R[6:12], self.R[12:18], self.R[18:24], self.R[24:30], self.R[30:36], self.R[36:42], self.R[42:]]
                # Optimization: Replaced below commented code with above
                #j = 0
                #B = []
                #while j < len(self.R):
                #    self.R[j] = self.R[j] ^ self.Kn[iteration][j]
                #    j += 1
                #    if j % 6 == 0:
                #        B.append(self.R[j-6:j])
    
                # Permutate B[1] to B[8] using the S-Boxes
                j = 0
                Bn = [0] * 32
                pos = 0
                while j < 8:
                    # Work out the offsets
                    m = (B[j][0] << 1) + B[j][5]
                    n = (B[j][1] << 3) + (B[j][2] << 2) + (B[j][3] << 1) + B[j][4]
    
                    # Find the permutation value
                    v = des.__sbox[j][(m << 4) + n]
    
                    # Turn value into bits, add it to result: Bn
                    Bn[pos] = (v & 8) >> 3
                    Bn[pos + 1] = (v & 4) >> 2
                    Bn[pos + 2] = (v & 2) >> 1
                    Bn[pos + 3] = v & 1
    
                    pos += 4
                    j += 1
    
                # Permutate the concatination of B[1] to B[8] (Bn)
                self.R = self.__permutate(des.__p, Bn)
    
                # Xor with L[i - 1]
                self.R = list(map(lambda x, y: x ^ y, self.R, self.L))
                # Optimization: This now replaces the below commented code
                #j = 0
                #while j < len(self.R):
                #    self.R[j] = self.R[j] ^ self.L[j]
                #    j += 1
    
                # L[i] becomes R[i - 1]
                self.L = tempR
    
                i += 1
                iteration += iteration_adjustment
            
            # Final permutation of R[16]L[16]
            self.final = self.__permutate(des.__fp, self.R + self.L)
            return self.final
    
    
        # Data to be encrypted/decrypted
        def crypt(self, data, crypt_type):
            """Crypt the data in blocks, running it through des_crypt()"""
    
            # Error check the data
            if not data:
                return ''
            if len(data) % self.block_size != 0:
                if crypt_type == des.DECRYPT: # Decryption must work on 8 byte blocks
                    raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes
    .")
                if not self.getPadding():
                    raise ValueError("Invalid data length, data must be a multiple of " + str(self.block_size) + " bytes
    . Try setting the optional padding character")
                else:
                    data += (self.block_size - (len(data) % self.block_size)) * self.getPadding()
                # print "Len of data: %f" % (len(data) / self.block_size)
    
            if self.getMode() == CBC:
                if self.getIV():
                    iv = self.__String_to_BitList(self.getIV())
                else:
                    raise ValueError("For CBC mode, you must supply the Initial Value (IV) for ciphering")
    
            # Split the data into blocks, crypting each one seperately
            i = 0
            dict = {}
            result = []
            #cached = 0
            #lines = 0
            while i < len(data):
                # Test code for caching encryption results
                #lines += 1
                #if dict.has_key(data[i:i+8]):
                    #print "Cached result for: %s" % data[i:i+8]
                #    cached += 1
                #    result.append(dict[data[i:i+8]])
                #    i += 8
                #    continue
                    
                block = self.__String_to_BitList(data[i:i+8])
    
                # Xor with IV if using CBC mode
                if self.getMode() == CBC:
                    if crypt_type == des.ENCRYPT:
                        block = list(map(lambda x, y: x ^ y, block, iv))
                        #j = 0
                        #while j < len(block):
                        #    block[j] = block[j] ^ iv[j]
                        #    j += 1
    
                    processed_block = self.__des_crypt(block, crypt_type)
    
                    if crypt_type == des.DECRYPT:
                        processed_block = list(map(lambda x, y: x ^ y, processed_block, iv))
                        #j = 0
                        #while j < len(processed_block):
                        #    processed_block[j] = processed_block[j] ^ iv[j]
                        #    j += 1
                        iv = block
                    else:
                        iv = processed_block
                else:
                    processed_block = self.__des_crypt(block, crypt_type)
    
    
                # Add the resulting crypted block to our list
                #d = self.__BitList_to_String(processed_block)
                #result.append(d)
                result.append(self.__BitList_to_String(processed_block))
                #dict[data[i:i+8]] = d
                i += 8
    
            # print "Lines: %d, cached: %d" % (lines, cached)
    
            # Return the full crypted string
            if _pythonMajorVersion < 3:
                return ''.join(result)
            else:
                return bytes.fromhex('').join(result)
    
        def encrypt(self, data, pad=None, padmode=None):
            """encrypt(data, [pad], [padmode]) -> bytes
    
            data : Bytes to be encrypted
            pad  : Optional argument for encryption padding. Must only be one byte
            padmode : Optional argument for overriding the padding mode.
    
            The data must be a multiple of 8 bytes and will be encrypted
            with the already specified key. Data does not have to be a
            multiple of 8 bytes if the padding character is supplied, or
            the padmode is set to PAD_PKCS5, as bytes will then added to
            ensure the be padded data is a multiple of 8 bytes.
            """
            data = self._guardAgainstUnicode(data)
            if pad is not None:
                pad = self._guardAgainstUnicode(pad)
            data = self._padData(data, pad, padmode)
            return self.crypt(data, des.ENCRYPT)
    
        def decrypt(self, data, pad=None, padmode=None):
            """decrypt(data, [pad], [padmode]) -> bytes
    
            data : Bytes to be encrypted
            pad  : Optional argument for decryption padding. Must only be one byte
            padmode : Optional argument for overriding the padding mode.
    
            The data must be a multiple of 8 bytes and will be decrypted
            with the already specified key. In PAD_NORMAL mode, if the
            optional padding character is supplied, then the un-encrypted
            data will have the padding characters removed from the end of
            the bytes. This pad removal only occurs on the last 8 bytes of
            the data (last data block). In PAD_PKCS5 mode, the special
            padding end markers will be removed from the data after decrypting.
            """
            data = self._guardAgainstUnicode(data)
            if pad is not None:
                pad = self._guardAgainstUnicode(pad)
            data = self.crypt(data, des.DECRYPT)
            return self._unpadData(data, pad, padmode)
    
    
    
    #############################################################################
    #                 Triple DES                    #
    #############################################################################
    class triple_des(_baseDes):
        """Triple DES encryption/decrytpion class
    
        This algorithm uses the DES-EDE3 (when a 24 byte key is supplied) or
        the DES-EDE2 (when a 16 byte key is supplied) encryption methods.
        Supports ECB (Electronic Code Book) and CBC (Cypher Block Chaining) modes.
    
        pyDes.des(key, [mode], [IV])
    
        key  -> Bytes containing the encryption key, must be either 16 or
                24 bytes long
        mode -> Optional argument for encryption type, can be either pyDes.ECB
            (Electronic Code Book), pyDes.CBC (Cypher Block Chaining)
        IV   -> Optional Initial Value bytes, must be supplied if using CBC mode.
            Must be 8 bytes in length.
        pad  -> Optional argument, set the pad character (PAD_NORMAL) to use
            during all encrypt/decrpt operations done with this instance.
        padmode -> Optional argument, set the padding mode (PAD_NORMAL or
            PAD_PKCS5) to use during all encrypt/decrpt operations done
            with this instance.
        """
        def __init__(self, key, mode=ECB, IV=None, pad=None, padmode=PAD_NORMAL):
            _baseDes.__init__(self, mode, IV, pad, padmode)
            self.setKey(key)
    
        def setKey(self, key):
            """Will set the crypting key for this object. Either 16 or 24 bytes long."""
            self.key_size = 24  # Use DES-EDE3 mode
            if len(key) != self.key_size:
                if len(key) == 16: # Use DES-EDE2 mode
                    self.key_size = 16
                else:
                    raise ValueError("Invalid triple DES key size. Key must be either 16 or 24 bytes long")
            if self.getMode() == CBC:
                if not self.getIV():
                    # Use the first 8 bytes of the key
                    self._iv = key[:self.block_size]
                if len(self.getIV()) != self.block_size:
                    raise ValueError("Invalid IV, must be 8 bytes in length")
            self.__key1 = des(key[:8], self._mode, self._iv,
                      self._padding, self._padmode)
            self.__key2 = des(key[8:16], self._mode, self._iv,
                      self._padding, self._padmode)
            if self.key_size == 16:
                self.__key3 = self.__key1
            else:
                self.__key3 = des(key[16:], self._mode, self._iv,
                          self._padding, self._padmode)
            _baseDes.setKey(self, key)
    
        # Override setter methods to work on all 3 keys.
    
        def setMode(self, mode):
            """Sets the type of crypting mode, pyDes.ECB or pyDes.CBC"""
            _baseDes.setMode(self, mode)
            for key in (self.__key1, self.__key2, self.__key3):
                key.setMode(mode)
    
        def setPadding(self, pad):
            """setPadding() -> bytes of length 1. Padding character."""
            _baseDes.setPadding(self, pad)
            for key in (self.__key1, self.__key2, self.__key3):
                key.setPadding(pad)
    
        def setPadMode(self, mode):
            """Sets the type of padding mode, pyDes.PAD_NORMAL or pyDes.PAD_PKCS5"""
            _baseDes.setPadMode(self, mode)
            for key in (self.__key1, self.__key2, self.__key3):
                key.setPadMode(mode)
    
        def setIV(self, IV):
            """Will set the Initial Value, used in conjunction with CBC mode"""
            _baseDes.setIV(self, IV)
            for key in (self.__key1, self.__key2, self.__key3):
                key.setIV(IV)
    
        def encrypt(self, data, pad=None, padmode=None):
            """encrypt(data, [pad], [padmode]) -> bytes
    
            data : bytes to be encrypted
            pad  : Optional argument for encryption padding. Must only be one byte
            padmode : Optional argument for overriding the padding mode.
    
            The data must be a multiple of 8 bytes and will be encrypted
            with the already specified key. Data does not have to be a
            multiple of 8 bytes if the padding character is supplied, or
            the padmode is set to PAD_PKCS5, as bytes will then added to
            ensure the be padded data is a multiple of 8 bytes.
            """
            ENCRYPT = des.ENCRYPT
            DECRYPT = des.DECRYPT
            data = self._guardAgainstUnicode(data)
            if pad is not None:
                pad = self._guardAgainstUnicode(pad)
            # Pad the data accordingly.
            data = self._padData(data, pad, padmode)
            if self.getMode() == CBC:
                self.__key1.setIV(self.getIV())
                self.__key2.setIV(self.getIV())
                self.__key3.setIV(self.getIV())
                i = 0
                result = []
                while i < len(data):
                    block = self.__key1.crypt(data[i:i+8], ENCRYPT)
                    block = self.__key2.crypt(block, DECRYPT)
                    block = self.__key3.crypt(block, ENCRYPT)
                    self.__key1.setIV(block)
                    self.__key2.setIV(block)
                    self.__key3.setIV(block)
                    result.append(block)
                    i += 8
                if _pythonMajorVersion < 3:
                    return ''.join(result)
                else:
                    return bytes.fromhex('').join(result)
            else:
                data = self.__key1.crypt(data, ENCRYPT)
                data = self.__key2.crypt(data, DECRYPT)
                return self.__key3.crypt(data, ENCRYPT)
    
        def decrypt(self, data, pad=None, padmode=None):
            """decrypt(data, [pad], [padmode]) -> bytes
    
            data : bytes to be encrypted
            pad  : Optional argument for decryption padding. Must only be one byte
            padmode : Optional argument for overriding the padding mode.
    
            The data must be a multiple of 8 bytes and will be decrypted
            with the already specified key. In PAD_NORMAL mode, if the
            optional padding character is supplied, then the un-encrypted
            data will have the padding characters removed from the end of
            the bytes. This pad removal only occurs on the last 8 bytes of
            the data (last data block). In PAD_PKCS5 mode, the special
            padding end markers will be removed from the data after
            decrypting, no pad character is required for PAD_PKCS5.
            """
            ENCRYPT = des.ENCRYPT
            DECRYPT = des.DECRYPT
            data = self._guardAgainstUnicode(data)
            if pad is not None:
                pad = self._guardAgainstUnicode(pad)
            if self.getMode() == CBC:
                self.__key1.setIV(self.getIV())
                self.__key2.setIV(self.getIV())
                self.__key3.setIV(self.getIV())
                i = 0
                result = []
                while i < len(data):
                    iv = data[i:i+8]
                    block = self.__key3.crypt(iv,    DECRYPT)
                    block = self.__key2.crypt(block, ENCRYPT)
                    block = self.__key1.crypt(block, DECRYPT)
                    self.__key1.setIV(iv)
                    self.__key2.setIV(iv)
                    self.__key3.setIV(iv)
                    result.append(block)
                    i += 8
                if _pythonMajorVersion < 3:
                    data = ''.join(result)
                else:
                    data = bytes.fromhex('').join(result)
            else:
                data = self.__key3.crypt(data, DECRYPT)
                data = self.__key2.crypt(data, ENCRYPT)
                data = self.__key1.crypt(data, DECRYPT)
            return self._unpadData(data, pad, padmode)

    test_pydes.py

    from pyDes import *
    
    #############################################################################
    #                 Examples                    #
    #############################################################################
    def _example_triple_des_():
        from time import time
    
        # Utility module
        from binascii import unhexlify as unhex
    
        # example shows triple-des encryption using the des class
        print ("Example of triple DES encryption in default ECB mode (DES-EDE3)
    ")
    
        print ("Triple des using the des class (3 times)")
        t = time()
        k1 = des(unhex("133457799BBCDFF1"))
        k2 = des(unhex("1122334455667788"))
        k3 = des(unhex("77661100DD223311"))
        d = "Triple DES test string, to be encrypted and decrypted..."
        print ("Key1:      %r" % k1.getKey())
        print ("Key2:      %r" % k2.getKey())
        print ("Key3:      %r" % k3.getKey())
        print ("Data:      %r" % d)
    
        e1 = k1.encrypt(d)
        e2 = k2.decrypt(e1)
        e3 = k3.encrypt(e2)
        print ("Encrypted: %r" % e3)
    
        d3 = k3.decrypt(e3)
        d2 = k2.encrypt(d3)
        d1 = k1.decrypt(d2)
        print ("Decrypted: %r" % d1)
        print ("DES time taken: %f (%d crypt operations)" % (time() - t, 6 * (len(d) / 8)))
        print ("")
    
        # Example below uses the triple-des class to achieve the same as above
        print ("Now using triple des class")
        t = time()
        t1 = triple_des(unhex("133457799BBCDFF1112233445566778877661100DD223311"))
        print ("Key:       %r" % t1.getKey())
        print ("Data:      %r" % d)
    
        td1 = t1.encrypt(d)
        print ("Encrypted: %r" % td1)
    
        td2 = t1.decrypt(td1)
        print ("Decrypted: %r" % td2)
    
        print ("Triple DES time taken: %f (%d crypt operations)" % (time() - t, 6 * (len(d) / 8)))
    
    def _example_des_():
        from time import time
    
        # example of DES encrypting in CBC mode with the IV of ""
        print ("Example of DES encryption using CBC mode
    ")
        t = time()
        k = des("DESCRYPT", CBC, "")
        data = "DES encryption algorithm"
        print ("Key      : %r" % k.getKey())
        print ("Data     : %r" % data)
    
        d = k.encrypt(data)
        print ("Encrypted: %r" % d)
    
        d = k.decrypt(d)
        print ("Decrypted: %r" % d)
        print ("DES time taken: %f (6 crypt operations)" % (time() - t))
        print ("")
    
    def _filetest_():
        from time import time
    
        f = open("pyDes.py", "rb+")
        d = f.read()
        f.close()
    
        t = time()
        k = des("MyDESKey")
    
        d = k.encrypt(d, " ")
        f = open("pyDes.py.enc", "wb+")
        f.write(d)
        f.close()
        
        d = k.decrypt(d, " ")
        f = open("pyDes.py.dec", "wb+")
        f.write(d)
        f.close()
        print ("DES file test time: %f" % (time() - t))
        
    def _profile_():
        try:
            import cProfile as profile
        except:
            import profile
        profile.run('_fulltest_()')
        #profile.run('_filetest_()')
    
    def _fulltest_():
        # This should not produce any unexpected errors or exceptions
        from time import time
        from binascii import unhexlify as unhex
        from binascii import hexlify as dohex
    
        t = time()
    
        data = "DES encryption algorithm".encode('ascii')
        k = des("", CBC, "")
        d = k.encrypt(data)
        if k.decrypt(d) != data:
            print ("Test 1:  Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 1:  Successful")
    
        data = "Default string of text".encode('ascii')
        k = des("", CBC, "")
        d = k.encrypt(data, "*")
        if k.decrypt(d, "*") != data:
            print ("Test 2:  Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 2:  Successful")
    
        data = "String to Pad".encode('ascii')
        k = des("
    	ABC
    ")
        d = k.encrypt(data, "*")
        if k.decrypt(d, "*") != data:
            print ("Test 3:  Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 3:  Successful")
    
        k = des("
    	ABC
    ")
        d = k.encrypt(unhex("000102030405060708FF8FDCB04080"), unhex("44"))
        if k.decrypt(d, unhex("44")) != unhex("000102030405060708FF8FDCB04080"):
            print ("Test 4a: Error: Unencypted data block does not match start data")
        elif k.decrypt(d) != unhex("000102030405060708FF8FDCB0408044"):
            print ("Test 4b: Error: Unencypted data block does not match start data")
        else:
            print ("Test 4:  Successful")
    
        data = "String to Pad".encode('ascii')
        k = des("
    	key
    ")
        d = k.encrypt(data, padmode=PAD_PKCS5)
        if k.decrypt(d, padmode=PAD_PKCS5) != data:
            print ("Test 5a: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        # Try same with padmode set on the class instance.
        k = des("
    	key
    ", padmode=PAD_PKCS5)
        d = k.encrypt(data)
        if k.decrypt(d) != data:
            print ("Test 5b: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 5:  Successful")
    
        k = triple_des("MyDesKey
    	ABC
    0987*543")
        d = k.encrypt(unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"))
        if k.decrypt(d) != unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"):
            print ("Test 6:  Error: Unencypted data block does not match start data")
        else:
            print ("Test 6:  Successful")
    
        k = triple_des("
    	ABC
    0987*543")
        d = k.encrypt(unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"))
        if k.decrypt(d) != unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"):
            print ("Test 7:  Error: Unencypted data block does not match start data")
        else:
            print ("Test 7:  Successful")
    
        k = triple_des("MyDesKey
    	ABC
    0987*54B", CBC, "12341234")
        d = k.encrypt(unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"))
        if k.decrypt(d) != unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080"):
            print ("Test 8:  Error: Triple DES CBC failed.")
        else:
            print ("Test 8:  Successful")
    
        k = triple_des("MyDesKey
    	ABC
    0987*54B", CBC, "12341234")
        d = k.encrypt(unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDC"), '.')
        if k.decrypt(d, '.') != unhex("000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDCB04080000102030405060708FF8FDC"):
            print ("Test 9:  Error: Triple DES CBC with padding failed.")
        else:
            print ("Test 9:  Successful")
    
        k = triple_des("
    	key
    IsGoodKey")
        data = "String to Pad".encode('ascii')
        d = k.encrypt(data, padmode=PAD_PKCS5)
        if k.decrypt(d, padmode=PAD_PKCS5) != data:
            print ("Test 10: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 10: Successful")
    
        k = triple_des("
    	key
    IsGoodKey")
        data = "String not need Padding.".encode('ascii')
        d = k.encrypt(data, padmode=PAD_PKCS5)
        if k.decrypt(d, padmode=PAD_PKCS5) != data:
            print ("Test 11: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 11: Successful")
    
        # Test PAD_PKCS5 with CBC encryption mode.
    
        k = des("IGoodKey", mode=CBC, IV="1234567")
        data = "String to Pad".encode('ascii')
        d = k.encrypt(data, padmode=PAD_PKCS5)
        if k.decrypt(d, padmode=PAD_PKCS5) != data:
            print ("Test 12: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 12: Successful")
    
        k = des("IGoodKey", mode=CBC, IV="1234567")
        data = "String not need Padding.".encode('ascii')
        d = k.encrypt(data, padmode=PAD_PKCS5)
        if k.decrypt(d, padmode=PAD_PKCS5) != data:
            print ("Test 13: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 13: Successful")
    
        k = triple_des("
    	key
    IsGoodKey", mode=CBC, IV="1234567")
        data = "String to Pad".encode('ascii')
        d = k.encrypt(data, padmode=PAD_PKCS5)
        if k.decrypt(d, padmode=PAD_PKCS5) != data:
            print ("Test 14: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 14: Successful")
    
        k = triple_des("
    	key
    IsGoodKey", mode=CBC, IV="1234567")
        data = "String not need Padding.".encode('ascii')
        d = k.encrypt(data, padmode=PAD_PKCS5)
        if k.decrypt(d, padmode=PAD_PKCS5) != data:
            print ("Test 15: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 15: Successful")
    
        k = triple_des("
    	key
    IsGoodKey", mode=CBC, IV="1234567", padmode=PAD_PKCS5)
        data = "String to Pad".encode('ascii')
        d = k.encrypt(data)
        if k.decrypt(d) != data:
            print ("Test 16: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 16: Successful")
    
        # Ensure no error occurs when creating an instance with no IV yet set,
        # test supplied by "Yoav Aner".
        k = triple_des("" * 24, mode=CBC, pad=None, padmode=PAD_PKCS5)
        data = "String to Pad".encode('ascii')
        d = k.encrypt(data)
        if k.decrypt(d) != data:
            print ("Test 17: Error: decrypt does not match. %r != %r" % (data, k.decrypt(d)))
        else:
            print ("Test 17: Successful")
    
        print ("")
        print ("Total time taken: %f" % (time() - t))
    
    if __name__ == '__main__':
        #_example_des_()
        #_example_triple_des_()
        _fulltest_()
        #_profile_()
  • 相关阅读:
    memcached+magent的集群部署详细过程
    HBase的安装配置
    vim操作知识累积
    Missing artifact jdk.tools:jdk.tools:jar:1.6
    hadoop2.X解压后的配置步骤
    免密码的SSH配置过程
    Linux网卡重启出现"No Suitable Device found:no device found for XXX"
    钉钉、钉应用(微应用和E应用)开发介绍
    Intellij-Idea使用小细节
    SpringMVC项目使用elastic search搜索
  • 原文地址:https://www.cnblogs.com/lanzhi/p/6468351.html
Copyright © 2011-2022 走看看