zoukankan      html  css  js  c++  java
  • 图的建立及两种优先搜索实现

    利用邻接矩阵法建立一个简单的图,然后利用广度优先搜索(BFS)和深度优先搜索(DFS)测试代码,并实现了深度优先搜索的非递归形式。需要注意的是,由于每次测试前都要初始化图,故每种方法只能单独测试。

    import java.util.LinkedList;
    import java.util.Queue;
    import java.util.Stack;
    
    class GraphVertex { //图的顶点。
        char vertex;
        boolean isVisited;
        public GraphVertex(char vt) {
            vertex = vt; isVisited = false;
        }
        @Override
        public boolean equals(Object obj) {
            return this.vertex == ((GraphVertex)obj).vertex;
        }
        @Override
        public int hashCode() {
            return (this.vertex - '0');
        }
        @Override
        public String toString() {
            return "" + vertex + '	' + isVisited;
        }
    }
    class Graph {
        int vertexNum;
        GraphVertex[] gVertex; //顶点
        int[][] adjMat; //邻接矩阵
        public Graph(int vertexNum) {
            this.vertexNum = vertexNum;
            gVertex = new GraphVertex[vertexNum];
            adjMat = new int[vertexNum][vertexNum]; //全部元素初始化为0
        }
        public void addVertexs(GraphVertex[] nodes) { //添加顶点
            System.arraycopy(nodes, 0, gVertex, 0, nodes.length);
        }
        public void addEdge(GraphVertex ch1, GraphVertex ch2) { //构造邻接矩阵
            int index1 = getIndex(ch1);
            int index2 = getIndex(ch2);
            adjMat[index1][index2] = 1;
            adjMat[index2][index1] = 1;
        }
        public void BFS(GraphVertex ch) { //广度优先搜索
            Queue<GraphVertex> queue = new LinkedList<GraphVertex>();
            int index = getIndex(ch);
            GraphVertex gv = gVertex[index];
            System.out.print(gv.vertex);
            gv.isVisited = true;
            queue.offer(gv);
            while (!queue.isEmpty()) {
                GraphVertex tmp = queue.poll();
                int i = getIndex(tmp);
                for (int j = 0; j < adjMat[i].length; j++) {
                    if(adjMat[i][j] == 1 && gVertex[j].isVisited == false) {
                        System.out.println(gVertex[j].vertex);
                        gVertex[j].isVisited = true;
                        queue.offer(gVertex[j]);
                    }
                }
            }
        }
        public void DFS(GraphVertex ch) { // 深度优先搜索(递归实现)
            int index = getIndex(ch);
            GraphVertex gv = gVertex[index];
            System.out.println(gv.vertex);
            gv.isVisited = true;
            for (int j = 0; j < adjMat[index].length; j++) {
                if(adjMat[index][j] == 1 && gVertex[j].isVisited == false) {
                    DFS(gVertex[j]);
                }
            }
        }
        public void NonDFS(GraphVertex ch) { //深度优先搜索(非递归实现)
            Stack<GraphVertex> stack = new Stack<GraphVertex>();
            int index = getIndex(ch);
            GraphVertex gv = gVertex[index];
            System.out.println(gv.vertex);
            gv.isVisited = true;
            stack.push(gv);
            while (!stack.isEmpty()) {
                GraphVertex tmp = stack.peek();
                int nextIndex = nextNotVisitVertex(tmp);
                if(nextIndex == -1) 
                    stack.pop();
                else {
                    GraphVertex vtex = gVertex[nextIndex];
                    System.out.println(vtex.vertex);
                    vtex.isVisited = true;
                    stack.push(vtex);
                }
            }
        }
        
        public int nextNotVisitVertex(GraphVertex tmp) {
            int index = getIndex(tmp);
            for (int j = 0; j < adjMat[index].length; j++) {
                if(adjMat[index][j] == 1 && gVertex[j].isVisited == false) {
                    return j;
                }
            }
            return -1;
        }
        public int getIndex(GraphVertex gv) {
            for (int i = 0; i < gVertex.length; i++) {
                if(gv.equals(gVertex[i]))
                    return i;
            }
            return Integer.MAX_VALUE;
        }
    }
    public class TestClass { //测试类
        public static void addEdges(Graph graph, String[] edges) {
            for (int i = 0; i < edges.length; i++) {
                char ch1 = edges[i].charAt(0);
                char ch2 = edges[i].charAt(1);
                graph.addEdge(new GraphVertex(ch1), new GraphVertex((ch2)));
            }
        }
        public static void main(String[] args) {
            char[] vertexs = {'A', 'B', 'C', 'D', 'E'};
            String[] edges = {"AB", "AE", "BC", "BD", "BE", "CD", "DE"};
            Graph graph = new Graph(vertexs.length);
            GraphVertex[] nodes = new GraphVertex[vertexs.length];
            for (int i = 0; i < nodes.length; i++) {
                nodes[i] = new GraphVertex(vertexs[i]);
            }
            graph.addVertexs(nodes);
            addEdges(graph, edges);
            
    //        graph.BFS(new GraphVertex('A'));
    //        graph.DFS(new GraphVertex('A'));
            graph.NonDFS(new GraphVertex('A'));
        }
    }
  • 相关阅读:
    [Flink原理介绍第四篇】:Flink的Checkpoint和Savepoint介绍
    Flink -- Barrier
    深入理解Flink ---- End-to-End Exactly-Once语义
    深入理解Flink ---- 系统内部消息传递的exactly once语义
    flink watermark介绍
    flink中对于window和watermark的一些理解
    Apache Flink:详细入门
    flink学习之十一-window&EventTime实例
    Lambda语法
    String s = “1a2a3a4a” 解码为 “1234”
  • 原文地址:https://www.cnblogs.com/lasclocker/p/4861814.html
Copyright © 2011-2022 走看看