zoukankan      html  css  js  c++  java
  • 数量积定值

    【题目】
    已知椭圆 (C:dfrac{x^2}{a^2}+dfrac{y^2}{b^2}=1(a>b>0)) 的左顶点为 (A) ,右焦点为 (F) ,上顶点为 (B) ,过 (F) 的直线 (l) 交椭圆 (C)(P,Q) .当 (P)(B) 重合时,( riangle APF)( riangle AQP) 的面积分别为 (dfrac{3sqrt{3}}{2},dfrac{9sqrt{3}}{10}) .

    ((1)) 求椭圆 (C) 的方程;
    ((2))(x) 轴上找一点 (M) ,当 (l) 变化时,(overrightarrow{MP}cdotoverrightarrow{MQ}) 为定值.

    【解析】

    ((1))(QNperp x) 轴于 (N) ,则

    [dfrac{S_{ riangle APF}}{S_{ riangle AQF}}=dfrac{PO}{QN}=dfrac{OF}{NF}=dfrac{5}{3}Longrightarrow QN=dfrac{3}{5}b,NF=dfrac{3}{5}cLongrightarrow P(dfrac{8}{5}c,-dfrac{3}{5}b) ]

    故有

    [egin{cases}dfrac{64c^2}{25a^2}+dfrac{9b^2}{25b^2}=1\[1ex]dfrac{1}{2}(a+c)b=dfrac{3sqrt{3}}{2}\[1ex] a^2=b^2+c^2end{cases}Longrightarrow egin{cases}a=2\[1ex] b=sqrt{3}\[1ex] c=1end{cases} ]

    所以椭圆 (C) 的标准方程为 (dfrac{x^2}{4}+dfrac{y^2}{3}=1) .

    ((2))(P(x_1,y_1),Q(x_2,y_2),M(a,0)) .

    ①当直线 (l) 的斜率不为 (0) 时,设其方程为 (x=my+1) .联立直线与椭圆方程得

    [(3m^2+4)y^2+6my-9=0 ]

    由韦达定理得

    [y_1+y_2=-dfrac{6m}{3m^2+4}; ,;y_1y_2=-dfrac{9}{3m^2+4} ]

    故有

    [egin{array}{l}x_1+x_2=m(y_1+y_2)+2=dfrac{8}{3m^2+4} \[1ex] x_1x_2=m^2y_1y_2+m(y_1+y_2)+1=dfrac{-12m^2+4}{3m^2+4}end{array} ]

    [egin{array}{rl}overrightarrow{MP}cdotoverrightarrow{MQ}&=(x_1-a,y_1)cdot(x_2-a,y_2) \[1ex] &=x_1x_2-a(x_1+x_2)+a^2+y_1y_2 \[1ex] &=dfrac{-4(3m^2+4)+11-8a}{3m^2+4}+a^2end{array} ]

    则当 (11-8a=0)(a=dfrac{11}{8}) 时,(overrightarrow{MP}cdotoverrightarrow{MQ}=-dfrac{135}{64}) ,为定值.

    ②当 (l) 的斜率为 (0) 时,求得 (P(-2,0),Q(2,0)) ,此时

    [overrightarrow{MP}cdotoverrightarrow{MQ}=(dfrac{11}{8}+2,0)cdot(dfrac{11}{8}-2,0)=dfrac{27}{8} imes(-dfrac{5}{8})+0=-dfrac{135}{64} ]

    综上,存在点 (M(dfrac{11}{8},0)) 使得 (overrightarrow{MP}cdotoverrightarrow{MQ}) 为定值.

  • 相关阅读:
    Roads in the Kingdom CodeForces
    Vasya and Shifts CodeForces
    SOS dp
    Singer House CodeForces
    Codeforces Round #419 (Div. 1) (ABCD)
    在踏踏实实的生活里让自己坚持去做梦
    Replace Delegation with Inheritance
    Replace Inheritance with Delegation
    Replace Parameter with Methods
    Preserve Whole Object
  • 原文地址:https://www.cnblogs.com/lbyifeng/p/12253833.html
Copyright © 2011-2022 走看看