【题目】
已知椭圆 (C:dfrac{x^2}{a^2}+dfrac{y^2}{b^2}=1(a>b>0)) 的左顶点为 (A) ,右焦点为 (F) ,上顶点为 (B) ,过 (F) 的直线 (l) 交椭圆 (C) 于 (P,Q) .当 (P) 与 (B) 重合时,( riangle APF) 与 ( riangle AQP) 的面积分别为 (dfrac{3sqrt{3}}{2},dfrac{9sqrt{3}}{10}) .
((1)) 求椭圆 (C) 的方程;
((2)) 在 (x) 轴上找一点 (M) ,当 (l) 变化时,(overrightarrow{MP}cdotoverrightarrow{MQ}) 为定值.
【解析】
((1)) 作 (QNperp x) 轴于 (N) ,则
[dfrac{S_{ riangle APF}}{S_{ riangle AQF}}=dfrac{PO}{QN}=dfrac{OF}{NF}=dfrac{5}{3}Longrightarrow QN=dfrac{3}{5}b,NF=dfrac{3}{5}cLongrightarrow P(dfrac{8}{5}c,-dfrac{3}{5}b)
]
故有
[egin{cases}dfrac{64c^2}{25a^2}+dfrac{9b^2}{25b^2}=1\[1ex]dfrac{1}{2}(a+c)b=dfrac{3sqrt{3}}{2}\[1ex] a^2=b^2+c^2end{cases}Longrightarrow egin{cases}a=2\[1ex] b=sqrt{3}\[1ex] c=1end{cases}
]
所以椭圆 (C) 的标准方程为 (dfrac{x^2}{4}+dfrac{y^2}{3}=1) .
((2)) 设 (P(x_1,y_1),Q(x_2,y_2),M(a,0)) .
①当直线 (l) 的斜率不为 (0) 时,设其方程为 (x=my+1) .联立直线与椭圆方程得
[(3m^2+4)y^2+6my-9=0
]
由韦达定理得
[y_1+y_2=-dfrac{6m}{3m^2+4}; ,;y_1y_2=-dfrac{9}{3m^2+4}
]
故有
[egin{array}{l}x_1+x_2=m(y_1+y_2)+2=dfrac{8}{3m^2+4} \[1ex] x_1x_2=m^2y_1y_2+m(y_1+y_2)+1=dfrac{-12m^2+4}{3m^2+4}end{array}
]
故
[egin{array}{rl}overrightarrow{MP}cdotoverrightarrow{MQ}&=(x_1-a,y_1)cdot(x_2-a,y_2) \[1ex] &=x_1x_2-a(x_1+x_2)+a^2+y_1y_2 \[1ex] &=dfrac{-4(3m^2+4)+11-8a}{3m^2+4}+a^2end{array}
]
则当 (11-8a=0) 即 (a=dfrac{11}{8}) 时,(overrightarrow{MP}cdotoverrightarrow{MQ}=-dfrac{135}{64}) ,为定值.
②当 (l) 的斜率为 (0) 时,求得 (P(-2,0),Q(2,0)) ,此时
[overrightarrow{MP}cdotoverrightarrow{MQ}=(dfrac{11}{8}+2,0)cdot(dfrac{11}{8}-2,0)=dfrac{27}{8} imes(-dfrac{5}{8})+0=-dfrac{135}{64}
]
综上,存在点 (M(dfrac{11}{8},0)) 使得 (overrightarrow{MP}cdotoverrightarrow{MQ}) 为定值.