作业要求:
- 取出一个新闻列表页的全部新闻 包装成函数。
- 获取总的新闻篇数,算出新闻总页数。
- 获取全部新闻列表页的全部新闻详情。
- 找一个自己感兴趣的主题,进行数据爬取,并进行分词分析。不能与其它同学雷同。
前三个要求代码如下:
import requests
from bs4 import BeautifulSoup
from datetime import datetime
import re
# 设置local是处理包含中文格式时间(%Y年%m月%d日)时报错:
# UnicodeEncodeError: 'locale' codec can't encode character 'u5e74'
# import locale
# locale.setlocale(locale.LC_CTYPE, 'chinese')
def crawlOnePageSchoolNews(page_url):
res = requests.get(page_url)
res.encoding = 'UTF-8'
soup = BeautifulSoup(res.text, 'html.parser')
news = soup.select('.news-list > li')
for n in news:
# print(n)
print('**' * 5 + '列表页信息' + '**' * 10)
print('新闻链接:' + n.a.attrs['href'])
print('新闻标题:' + n.select('.news-list-title')[0].text)
print('新闻描述:' + n.a.select('.news-list-description')[0].text)
print('新闻时间:' + n.a.select('.news-list-info > span')[0].text)
print('新闻来源:' + n.a.select('.news-list-info > span')[1].text)
getNewDetail(n.a.attrs['href'])
def getNewDetail(href):
print('**' * 5 + '详情页信息' + '**' * 10)
res1 = requests.get(href)
res1.encoding = 'UTF-8'
soup1 = BeautifulSoup(res1.text, 'html.parser')
if soup1.select('.show-info'): # 防止之前网页没有show_info
news_info = soup1.select('.show-info')[0].text
else:return
info_list = ['来源', '发布时间', '点击', '作者', '审核', '摄影'] # 需要解析的字段
news_info_set = set(news_info.split('xa0')) - {' ', ''} # 网页中的 获取后会解析成xa0,所以可以使用xa0作为分隔符
# 循环打印文章信息
for n_i in news_info_set:
for info_flag in info_list:
if n_i.find(info_flag) != -1: # 因为时间的冒号采用了英文符所以要进行判断
if info_flag == '发布时间':
# 将发布时间字符串转为datetime格式,方便日后存储到数据库
release_time = datetime.strptime(n_i[n_i.index(':') + 1:], '%Y-%m-%d %H:%M:%S ')
print(info_flag + ':', release_time)
elif info_flag == '点击': # 点击次数是通过文章id访问php后使用js写入,所以这里单独处理
getClickCount(href)
else:
print(info_flag + ':' + n_i[n_i.index(':') + 1:])
news_content = soup1.select('#content')[0].text
print(news_content) # 文章内容
print('————' * 40)
def getClickCount(news_url):
# http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80
# 上面链接为文章页得出访问次数的URL
click_num_url = 'http://oa.gzcc.cn/api.php?op=count&id={}&modelid=80'
# 通过正则表达式得出文章id
click_num_url = click_num_url.format(re.search('_(.*)/(.*).html', news_url).group(2))
res2 = requests.get(click_num_url)
res2.encoding = 'UTF-8'
# $('#todaydowns').html('5');$('#weekdowns').html('106');$('#monthdowns').html('129');$('#hits').html('399');
# 上面为response的内容
# 使用正则表达式的方法获取点击次数
# res2.text[res2.text.rindex("('") + 2:res2.text.rindex("')")],不使用正则的方式
print('点击:' + re.search("$('#hits').html('(d*)')", res2.text).group(1))
crawlOnePageSchoolNews('http://news.gzcc.cn/html/xiaoyuanxinwen/')
pageURL = 'http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'
res = requests.get('http://news.gzcc.cn/html/xiaoyuanxinwen/')
res.encoding = 'UTF-8'
soup = BeautifulSoup(res.text, 'html.parser')
newsSum = int(re.search('(d*)条', soup.select('a.a1')[0].text).group(1))
if newsSum % 10:
pageSum = int(newsSum/10) + 1
else:
pageSum = int(newsSum/10)
for i in range(2, pageSum+1):
crawlOnePageSchoolNews(pageURL.format(i))
结果截图:
第四个要求中,我爬取了校园所有的新闻描述,分析大概学校这些年干了些什么,在哪干,强调些什么,统计出词云。
主要代码如下:
import requests
from bs4 import BeautifulSoup
import re
import jieba
editors = []
descriptions = ''
def crawlOnePageSchoolNews(page_url):
global descriptions
res0 = requests.get(page_url)
res0.encoding = 'UTF-8'
soup0 = BeautifulSoup(res0.text, 'html.parser')
news = soup0.select('.news-list > li')
for n in news:
print('新闻描述:' + n.a.select('.news-list-description')[0].text)
print('新闻来源:' + n.a.select('.news-list-info > span')[1].text)
descriptions = descriptions + ' ' + n.a.select('.news-list-description')[0].text
editors.append(n.a.select('.news-list-info > span')[1].text.split(' ')[0])
crawlOnePageSchoolNews('http://news.gzcc.cn/html/xiaoyuanxinwen/')
pageURL = 'http://news.gzcc.cn/html/xiaoyuanxinwen/{}.html'
res = requests.get('http://news.gzcc.cn/html/xiaoyuanxinwen/')
res.encoding = 'UTF-8'
soup = BeautifulSoup(res.text, 'html.parser')
newsSum = int(re.search('(d*)条', soup.select('a.a1')[0].text).group(1))
if newsSum % 10:
pageSum = int(newsSum / 10) + 1
else:
pageSum = int(newsSum / 10)
for i in range(2, pageSum+1):
crawlOnePageSchoolNews(pageURL.format(i))
with open('punctuation.txt', 'r', encoding='UTF-8') as punctuationFile:
for punctuation in punctuationFile.readlines():
descriptions = descriptions.replace(punctuation[0], ' ')
with open('meaningless.txt', 'r', encoding='UTF-8') as meaninglessFile:
mLessSet = set(meaninglessFile.read().split('
'))
mLessSet.add(' ')
# 加载保留字
with open('reservedWord.txt', 'r', encoding='UTF-8') as reservedWordFile:
reservedWordSet = set(reservedWordFile.read().split('
'))
for reservedWord in reservedWordSet:
jieba.add_word(reservedWord)
keywordList = list(jieba.cut(descriptions))
keywordSet = set(keywordList) - mLessSet # 将无意义词从词语集合中删除
keywordDict = {}
# 统计出词频字典
for word in keywordSet:
keywordDict[word] = keywordList.count(word)
# 对词频进行排序
keywordListSorted = list(keywordDict.items())
keywordListSorted.sort(key=lambda e: e[1], reverse=True)
# 将所有词频写出到txt做词云分析
for topWordTup in keywordListSorted:
print(topWordTup)
with open('word.txt', 'a+', encoding='UTF-8') as wordFile:
for i in range(0, topWordTup[1]):
wordFile.write(topWordTup[0]+'
')
经过以上处理之后将结果通过 https://wordsift.org/ 生成词云如下:
有些保留字没有处理好,所以有些事无意义词就选择性忽略
在上面中的文件已上传这里