zoukankan      html  css  js  c++  java
  • [LeetCode] 805. Split Array With Same Average 用相同均值拆分数组

    In a given integer array A, we must move every element of A to either list B or list C. (B and C initially start empty.)

    Return true if and only if after such a move, it is possible that the average value of B is equal to the average value of C, and B and C are both non-empty.

    Example :
    Input: 
    [1,2,3,4,5,6,7,8]
    Output: true
    Explanation: We can split the array into [1,4,5,8] and [2,3,6,7], and both of them have the average of 4.5.
    

    Note:

    • The length of A will be in the range [1, 30].
    • A[i] will be in the range of [0, 10000].

    给一个数组A,把A中的每一个元素都移到数组B或C中(B, C初始为空)。如果移动后可以使B和C的均值相等,则返回ture。其实就是将一个数组分成两部分,每部分的平均值相同。

    题目的关键点是:当能拆分成两个平均值相等的数组时,拆分的数组和原来数组的平均值是相同的。因此问题转换为,先算出A的平均值A_aver,如果A中的数组成的子数组B的平均值等于A_aver,再去判断剩余的数组成的数组C的平均值是否和A_aver相等。

    The key thing of this problem is, when we are able to make a same average split, the average of each splitted array is the same as the average of the whole array.
    So the problem can be transformed into a simpler one: given a target number (tosum), can we construct it using a specific number (lenB) of integers in a list(A).
    Then we can try every possible numbers of lenB, to see whether any one is feasible.

    If the array of size n can be splitted into group A and B with same mean, assuming A is the smaller group, then

    totalSum/n = Asum/k = Bsum/(n-k), where k = A.size() and 1 <= k <= n/2;
    Asum = totalSum*k/n, which is an integer. So we have totalSum*k%n == 0;

    如果一个长度为n的数组可以被划分为A和B两个数组,假设A的长度小于B并且A的大小是k,那么:total_sum / n == A_sum / k == B_sum / (n - k),其中1 <= k <= n / 2。可得出:A_sum = total_sum * k / n。由于A_sum一定是个整数,所以可以推导出total_sum * k % n == 0,那就是说,对于特定的total_sum和n而言,符合条件的k不会太多。首先验证是否存在符合条件的k,如果不存在就可以提前返回false。


    解法1: early pruning + knapsack DP, O(n^3 * M) 

    如果经过第一步的验证,发现确实有符合条件的k,那么我们在第二步中,就试图产生k个子元素的所有组合,并且计算他们的和。这里的思路就有点类似于背包问题了,我们的做法是:定义vector<vector<unordered_set<int>>> sums,其中sums[i][j]表示A[0, i]这个子数组中的任意j个元素的所有可能和。可以得到递推公式是:sums[i][j] = sums[i - 1][j] "join" (sums[i][j - 1] + A[i]),其中等式右边的第一项表示这j个元素中不包含A[i],而第二项表示这j个元素包含A[i]。这样就可以采用动态规划的思路得到sums[n - 1][k]了(1 <= k <= n / 2)。

    有了sums[n - 1][k],我们就检查sums[n - 1][k]中是否包含(total_sum * k / n)。一旦发现符合条件的k,就返回true,否则就返回false。

    If there are still some k valid after early pruning by checking totalSum*k%n == 0,
    we can generate all possible combination sum of k numbers from the array using DP, like knapsack problem. (Note: 1 <= k <= n/2)
    Next, for each valid k, simply check whether the group sum, i.e. totalSum * k / n, exists in the kth combination sum hashset.

    vector<vector<unordered_set<int>>> sums(n, vector<unordered_set<int>>(n/2+1));
    sums[i][j] is all possible combination sum of j numbers from the subarray A[0, i];
    Goal: sums[n-1][k], for all k in range [1, n/2]
    Initial condition: sums[i][0] = {0}, 0 <= i <= n-1; sums[0][1] = {all numbers in the array};
    Deduction: sums[i+1][j] = sums[i][j] "join" (sums[i][j-1] + A[i+1])
    The following code uses less space but the same DP formula.
    Runtime analysis:
    All numbers in the array are in range [0, 10000]. Let M = 10000.
    So the size of kth combination sum hashset, i.e. sums[...][k], is <= k * M;
    For each number in the array, the code need loop through all combination sum hashsets, so
    the total runtime is n * (1 * M + 2 * M + ... + (n/2) * M) = O(n^3 * M)

    解法2: TLE, For such k, the problem transforms to "Find k sum = Asum, i.e. totalSum * k/n, from an array of size n". This subproblem is similar to LC39 combination sum, which can be solved by backtracking.

    Python:

    class Solution(object):
        def splitArraySameAverage(self, A):
            if len(A)==1: return False
            global_avg = sum(A)/float(len(A))
            for lenB in range(1, len(A)/2+1):
                if int(lenB*global_avg) == lenB*global_avg:
                    if self.exist(lenB*global_avg, lenB, A):
                        return True
            return False
                
        def exist(self, tosum, item_count, arr):
            if item_count==0:
                return False if tosum else True
            if item_count > len(arr) or not arr: 
                return False
            if any([self.exist(tosum-arr[0], item_count-1, arr[1:]),
                   self.exist(tosum, item_count, arr[1:])]):
                return True
            return False 

    Python:

    # Time:  O(n^4)
    # Space: O(n^3)
    class Solution(object):
        def splitArraySameAverage(self, A):
            """
            :type A: List[int]
            :rtype: bool
            """
            def possible(total, n):
                for i in xrange(1, n//2+1):
                    if total*i%n == 0:
                        return True
                return False
            n, s = len(A), sum(A)
            if not possible(n, s):
                return False
    
            sums = [set() for _ in xrange(n//2+1)];
            sums[0].add(0)
            for num in A:  # O(n) times
                for i in reversed(xrange(1, n//2+1)):  # O(n) times
                    for prev in sums[i-1]:  # O(1) + O(2) + ... O(n/2) = O(n^2) times
                        sums[i].add(prev+num)
            for i in xrange(1, n//2+1):
                if s*i%n == 0 and s*i//n in sums[i]:
                    return True
            return False  

    C++: 1

    class Solution {
    public:
        bool splitArraySameAverage(vector<int>& A) {
            int n = A.size(), m = n/2, totalSum = accumulate(A.begin(), A.end(), 0);
            // early pruning
            bool isPossible = false;
            for (int i = 1; i <= m && !isPossible; ++i) 
                if (totalSum*i%n == 0) isPossible = true;
            if (!isPossible) return false;
            // DP like knapsack
            vector<unordered_set<int>> sums(m+1);
            sums[0].insert(0);
            for (int num: A) {
                for (int i = m; i >= 1; --i) 
                    for (const int t: sums[i-1]) 
                        sums[i].insert(t + num);
            }
            for (int i = 1; i <= m; ++i) 
                if (totalSum*i%n == 0 && sums[i].find(totalSum*i/n) != sums[i].end()) return true;
            return false;
        }
    };  

    C++: 1

    class Solution {
    public:
        bool splitArraySameAverage(vector<int>& A) {
            int n = A.size(), m = n / 2;
            int totalSum = accumulate(A.begin(), A.end(), 0);
            // early pruning
            bool isPossible = false;
            for (int i = 1; i <= m; ++i) {
                if (totalSum * i % n == 0) {
                    isPossible = true;
                    break;
                }
            }  
            if (!isPossible) {
                return false;
            }
            // DP like knapsack
            vector<unordered_set<int>> sums(m + 1);
            sums[0].insert(0);
            for (int num: A) {  // for each element in A, we try to add it to sums[i] by joining sums[i - 1]
                for (int i = m; i >= 1; --i) {
                    for (const int t: sums[i - 1]) {
                        sums[i].insert(t + num);
                    } 
                }
            }
            for (int i = 1; i <= m; ++i) {
                if (totalSum * i % n == 0 && sums[i].find(totalSum * i / n) != sums[i].end()) {
                    return true;
                }
            } 
            return false;
        }
    };  

    C++: 2 TLE

    class Solution {
    public:
        bool splitArraySameAverage(vector<int>& A) {
            int n = A.size(), m = n/2, totalSum = accumulate(A.begin(), A.end(), 0);
            sort(A.rbegin(), A.rend()); // Optimization
            for (int i = 1; i <= m; ++i) 
                if (totalSum*i%n == 0 && combinationSum(A, 0, i, totalSum*i/n)) return true;
            return false;
        }
        bool combinationSum(vector<int>& nums, int idx, int k, int tar) {
            if (tar > k * nums[idx]) return false; // Optimization, A is sorted from large to small
            if (k == 0) return tar == 0;
            for (int i = idx; i <= nums.size()-k; ++i) 
                if (nums[i] <= tar && combinationSum(nums, i+1, k-1, tar-nums[i])) return true;
            return false;
        }
    };
    

      

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    HBase 在HDFS上的物理目录结构
    Hbase-site.xml
    hbase-default.xml(Hbase 默认参数翻译)
    flink-conf.yaml
    Spark Standalone spark-default.conf
    Spark Standalone spark-env.sh
    windows linux 文件编码转换
    Hbase G1 gc 调优最终参数
    python
    python
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9847602.html
Copyright © 2011-2022 走看看