1、笔记
1、泛型 创建集合对象,使用泛型 好处: 1.避免了类型转换的麻烦,存储的是什么类型,取出的就是什么类型 2.把运行期异常(代码运行之后会抛出的异常),提升到了编译期(写代码的时候会报错) 弊端: 泛型是什么类型,只能存储什么类型的数据 private static void show02() { ArrayList<String> list = new ArrayList<>(); list.add("abc"); //list.add(1);//add(java.lang.String)in ArrayList cannot be applied to (int) //使用迭代器遍历list集合 Iterator<String> it = list.iterator(); while(it.hasNext()){ String s = it.next(); System.out.println(s+"->"+s.length()); } } 创建集合对象,不使用泛型 好处: 集合不使用泛型,默认的类型就是Object类型,可以存储任意类型的数据 弊端: 不安全,会引发异常 private static void show01() { ArrayList list = new ArrayList(); list.add("abc"); list.add(1); //使用迭代器遍历list集合 //获取迭代器 Iterator it = list.iterator(); //使用迭代器中的方法hasNext和next遍历集合 while(it.hasNext()){ //取出元素也是Object类型 Object obj = it.next(); System.out.println(obj); //想要使用String类特有的方法,length获取字符串的长度;不能使用 多态 Object obj = "abc"; //需要向下转型 //会抛出ClassCastException类型转换异常,不能把Integer类型转换为String类型 String s = (String)obj; System.out.println(s.length()); } } 2、定义含有泛型的类 /* 定义一个含有泛型的类,模拟ArrayList集合 泛型是一个未知的数据类型,当我们不确定什么什么数据类型的时候,可以使用泛型 泛型可以接收任意的数据类型,可以使用Integer,String,Student... 创建对象的时候确定泛型的数据类型 */ public class GenericClass<E> { private E name; public E getName() { return name; } public void setName(E name) { this.name = name; } 3、含有泛型的方法 定义含有泛型的方法:泛型定义在方法的修饰符和返回值类型之间 格式: 修饰符 <泛型> 返回值类型 方法名(参数列表(使用泛型)){ 方法体; } 含有泛型的方法,在调用方法的时候确定泛型的数据类型 传递什么类型的参数,泛型就是什么类型 public class GenericMethod { //定义一个含有泛型的方法 public <M> void method01(M m){ System.out.println(m); } //定义一个含有泛型的静态方法 public static <S> void method02(S s){ System.out.println(s); } 4、定义含有泛型的接口 public interface GenericInterface<I> { public abstract void method(I i); } 含有泛型的接口,第一种使用方式:定义接口的实现类,实现接口,指定接口的泛型 public interface Iterator<E> { E next(); } Scanner类实现了Iterator接口,并指定接口的泛型为String,所以重写的next方法泛型默认就是String public final class Scanner implements Iterator<String>{ public String next() {} } public class GenericInterfaceImpl1 implements GenericInterface<String>{ @Override public void method(String s) { System.out.println(s); } 含有泛型的接口第二种使用方式:接口使用什么泛型,实现类就使用什么泛型,类跟着接口走 就相当于定义了一个含有泛型的类,创建对象的时候确定泛型的类型 public interface List<E>{ boolean add(E e); E get(int index); } public class ArrayList<E> implements List<E>{ public boolean add(E e) {} public E get(int index) {} } public class GenericInterfaceImpl2<I> implements GenericInterface<I> { @Override public void method(I i) { System.out.println(i); } 5、泛型的通配符 泛型的通配符: ?:代表任意的数据类型 使用方式: 不能创建对象使用 只能作为方法的参数使用 当使用泛型类或者接口时,传递的数据中,泛型类型不确定,可以通过通配符<?>表示。但是一旦使用泛型的通配符后,只能使用Object类中的共性方法,集合中元素自身方法无法使用。 public class Demo05Generic { public static void main(String[] args) { ArrayList<Integer> list01 = new ArrayList<>(); list01.add(1); list01.add(2); ArrayList<String> list02 = new ArrayList<>(); list02.add("a"); list02.add("b"); printArray(list01); printArray(list02); //ArrayList<?> list03 = new ArrayList<?>(); } 定义一个方法,能遍历所有类型的ArrayList集合 这时候我们不知道ArrayList集合使用什么数据类型,可以泛型的通配符?来接收数据类型 注意: 泛型没有继承概念的 public static void printArray(ArrayList<?> list){ //使用迭代器遍历集合 Iterator<?> it = list.iterator(); while(it.hasNext()){ //it.next()方法,取出的元素是Object,可以接收任意的数据类型 Object o = it.next(); System.out.println(o); } } } /* 泛型的上限限定: ? extends E 代表使用的泛型只能是E类型的子类/本身 泛型的下限限定: ? super E 代表使用的泛型只能是E类型的父类/本身 */ public class Demo06Generic { public static void main(String[] args) { Collection<Integer> list1 = new ArrayList<Integer>(); Collection<String> list2 = new ArrayList<String>(); Collection<Number> list3 = new ArrayList<Number>(); Collection<Object> list4 = new ArrayList<Object>(); getElement1(list1); //getElement1(list2);//报错 getElement1(list3); //getElement1(list4);//报错 //getElement2(list1);//报错 //getElement2(list2);//报错 getElement2(list3); getElement2(list4); /* 类与类之间的继承关系 Integer extends Number extends Object String extends Object */ } // 泛型的上限:此时的泛型?,必须是Number类型或者Number类型的子类 public static void getElement1(Collection<? extends Number> coll){} // 泛型的下限:此时的泛型?,必须是Number类型或者Number类型的父类 public static void getElement2(Collection<? super Number> coll){} } 6、List接口 java.util.List接口 extends Collection接口 List接口的特点: 1.有序的集合,存储元素和取出元素的顺序是一致的(存储123 取出123) 2.有索引,包含了一些带索引的方法 3.允许存储重复的元素 List接口中带索引的方法(特有) - public void add(int index, E element): 将指定的元素,添加到该集合中的指定位置上。 ---> 原位置元素全部后移 - public E get(int index):返回集合中指定位置的元素。 - public E remove(int index): 移除列表中指定位置的元素, 返回的是被移除的元素。 - public E set(int index, E element):用指定元素替换集合中指定位置的元素,返回值的更新前的元素。 注意: 操作索引的时候,一定要防止索引越界异常 IndexOutOfBoundsException:索引越界异常,集合会报 ArrayIndexOutOfBoundsException:数组索引越界异常 StringIndexOutOfBoundsException:字符串索引越界异常 ArrayList 底层是 数组 结构,特点就是查询快,增删慢(多线程实现) public class Demo01List { public static void main(String[] args) { //创建一个List集合对象,多态 List<String> list = new ArrayList<>(); //使用add方法往集合中添加元素 list.add("a"); list.add("b"); list.add("c"); list.add("d"); list.add("a"); //打印集合 System.out.println(list);//[a, b, c, d, a] 不是地址重写了toString //public void add(int index, E element): 将指定的元素,添加到该集合中的指定位置上。 //在c和d之间添加一个itheima list.add(3,"itheima");//[a, b, c, itheima, d, a] System.out.println(list); //public E remove(int index): 移除列表中指定位置的元素, 返回的是被移除的元素。 //移除元素 String removeE = list.remove(2); System.out.println("被移除的元素:"+removeE);//被移除的元素:c System.out.println(list);//[a, b, itheima, d, a] //public E set(int index, E element):用指定元素替换集合中指定位置的元素,返回值的更新前的元素。 //把最后一个a,替换为A String setE = list.set(4, "A"); System.out.println("被替换的元素:"+setE);//被替换的元素:a System.out.println(list);//[a, b, itheima, d, A] //List集合遍历有3种方式 //使用普通的for循环 for(int i=0; i<list.size(); i++){ //public E get(int index):返回集合中指定位置的元素。 String s = list.get(i); System.out.println(s); } System.out.println("-----------------"); //使用迭代器 Iterator<String> it = list.iterator(); while(it.hasNext()){ String s = it.next(); System.out.println(s); } System.out.println("-----------------"); //使用增强for for (String s : list) { System.out.println(s); } String r = list.get(5);//IndexOutOfBoundsException: Index 5 out-of-bounds for length 5 System.out.println(r); } } LinkedList java.util.LinkedList集合 implements List接口 LinkedList集合的特点: 1.底层是一个链表结构:查询慢,增删快 2.里边包含了大量操作首尾元素的方法 注意:使用LinkedList集合特有的方法,不能使用多态 - public void addFirst(E e):将指定元素插入此列表的开头。 - public void addLast(E e):将指定元素添加到此列表的结尾。 - public void push(E e):将元素推入此列表所表示的堆栈。 - public E getFirst():返回此列表的第一个元素。 - public E getLast():返回此列表的最后一个元素。 - public E removeFirst():移除并返回此列表的第一个元素。 - public E removeLast():移除并返回此列表的最后一个元素。 - public E pop():从此列表所表示的堆栈处弹出一个元素。 - public boolean isEmpty():如果列表不包含元素,则返回true。 7、set java.util.Set接口 extends Collection接口 Set接口的特点: 1.不允许存储重复的元素 2.没有索引,没有带索引的方法,也不能使用普通的for循环遍历 java.util.HashSet集合 implements Set接口 HashSet特点: 1.不允许存储重复的元素 2.没有索引,没有带索引的方法,也不能使用普通的for循环遍历 3.是一个无序的集合,存储元素和取出元素的顺序有可能不一致 4.底层是一个哈希表结构(查询的速度非常的快) HashSet存储自定义类型元素 set集合报错元素唯一: 存储的元素(String,Integer,...Student,Person...),必须重写hashCode方法和equals方法 要求: 同名同年龄的人,视为同一个人,只能存储一次 eg. public class Student { private String name; private int age; (构造方法等略) @Override public boolean equals(Object o) { if (this == o) return true; if (o == null || getClass() != o.getClass()) return false; Student student = (Student) o; return age == student.age && Objects.equals(name, student.name); } @Override public int hashCode() { return Objects.hash(name, age); } } java.util.LinkedHashSet集合 extends HashSet集合 LinkedHashSet集合特点: 底层是一个哈希表(数组+链表/红黑树)+链表:多了一条链表(记录元素的存储顺序),保证元素有序 8、可变参数 在JDK1.5之后,如果我们定义一个方法需要接受多个参数,并且多个参数类型一致,我们可以对其简化成如下格式: 修饰符 返回值类型 方法名(参数类型... 形参名){ } 其实这个书写完全等价与 修饰符 返回值类型 方法名(参数类型[] 形参名){ } 只是后面这种定义,在调用时必须传递数组,而前者可以直接传递数据即可。 JDK1.5以后。出现了简化操作。... 用在参数上,称之为可变参数。 同样是代表数组,但是在调用这个带有可变参数的方法时,不用创建数组(这就是简单之处),直接将数组中的元素作为实际参数进行传递,其实编译成的class文件,将这些元素先封装到一个数组中,在进行传递。这些动作都在编译.class文件时,自动完成了。 eg. public class ChangeArgs { public static void main(String[] args) { int[] arr = { 1, 4, 62, 431, 2 }; int sum = getSum(arr); System.out.println(sum); // 6 7 2 12 2121 // 求 这几个元素和 6 7 2 12 2121 int sum2 = getSum(6, 7, 2, 12, 2121); System.out.println(sum2); } /* * 完成数组 所有元素的求和 原始写法 public static int getSum(int[] arr){ int sum = 0; for(int a : arr){ sum += a; } return sum; } */ //可变参数写法 public static int getSum(int... arr) { int sum = 0; for (int a : arr) { sum += a; } return sum; } 9、Collections public static <T> boolean addAll(Collection<T> c, T... elements) :往集合中添加一些元素。 public static void shuffle(List<?> list) 打乱顺序 :打乱集合顺序。 public static <T> void sort(List<T> list) :将集合中元素按照默认规则排序。 public static <T> void sort(List<T> list,Comparator<? super T> ) :将集合中元素按照指定规则排序。 eg. public class CollectionsDemo { public static void main(String[] args) { ArrayList<Integer> list = new ArrayList<Integer>(); //原来写法 //list.add(12); //list.add(14); //list.add(15); //list.add(1000); //采用工具类 完成 往集合中添加元素 Collections.addAll(list, 5, 222, 1,2); System.out.println(list); //排序方法 Collections.sort(list); System.out.println(list); } } 结果: [5, 222, 1, 2] [1, 2, 5, 222] Comparator比较器 eg. public class CollectionsDemo2 { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("cba"); list.add("aba"); list.add("sba"); list.add("nba"); //排序方法 Collections.sort(list); System.out.println(list); } } 结果:[aba, cba, nba, sba] 我们使用的是默认的规则完成字符串的排序,那么默认规则是怎么定义出来的呢? 说到排序了,简单的说就是两个对象之间比较大小,那么在JAVA中提供了两种比较实现的方式,一种是比较死板的采用 java.lang.Comparable接口去实现,一种是灵活的当我需要做排序的时候在去选择的java.util.Comparator 接口完成。 那么我们采用的 public static <T> void sort(List<T> list) 这个方法完成的排序,实际上要求了被排序的类型需要实现Comparable接口完成比较的功能,在String类型上如下: public final class String implements java.io.Serializable, Comparable<String>, CharSequence {} Comparator这个接口,位于位于java.util包下,排序是comparator能实现的功能之一,该接口代表一个比较器,比 较器具有可比性!顾名思义就是做排序的,通俗地讲需要比较两个对象谁排在前谁排在后,那么比较的方法就是: public int compare(String o1, String o2) :比较其两个参数的顺序。 两个对象比较的结果有三种:大于,等于,小于。 如果要按照升序排序, 则o1 小于o2,返回(负数),相等返回0,01大于02返回(正数) 如果要按照降序排序 则o1 小于o2,返回(正数),相等返回0,01大于02返回(负数) eg. public class CollectionsDemo3 { public static void main(String[] args) { ArrayList<String> list = new ArrayList<String>(); list.add("cba"); list.add("aba"); list.add("sba"); list.add("nba"); //排序方法 按照第一个单词的降序 Collections.sort(list, new Comparator<String>() { @Override public int compare(String o1, String o2) { return o2.charAt(0) ‐ o1.charAt(0); // 因为o1小于o2返回的是true,所以是降序 } }); System.out.println(list); } } 结果:[sba, nba, cba, aba] 练习 public class Student{ private String name; private int age; ----略---- } 测试: public class Demo { public static void main(String[] args) { // 创建四个学生对象 存储到集合中 ArrayList<Student> list = new ArrayList<Student>(); list.add(new Student("rose",18)); list.add(new Student("jack",16)); list.add(new Student("abc",16)); list.add(new Student("ace",17)); list.add(new Student("mark",16)); Collections.sort(list);//要求 该list中元素类型 必须实现比较器Comparable接口 } } 发现,当我们调用Collections.sort()方法的时候 程序报错了。 原因:如果想要集合中的元素完成排序,那么必须要实现比较器Comparable接口。 于是我们就完成了Student类的一个实现,如下: public class Student implements Comparable<Student>{ .... @Override public int compareTo(Student o) { return this.age‐o.age;//升序 } }