zoukankan      html  css  js  c++  java
  • kafka单机安装测试-原创-本机测试过

    安装环境:vmware 安装的centos6.8   安装IP地址:192.168.52.136

    kafka和zookeeper版本:kafka_2.13-2.4.0.tgz  和zookeeper-3.4.5.tar.gz  

    centos安装目录:

    zookeeper 配置和启动就不说了 

    ./zkServer.sh start
    

      

    启动kafka

     /usr/local/kafka/bin/kafka-server-start.sh  /usr/local/kafka/config/server.properties
    

     

    查看实时消息

    ./kafka-console-consumer.sh --bootstrap-server 192.168.52.136:9092 --topic test3 --from-beginning
    

      

    server.properties

    # Licensed to the Apache Software Foundation (ASF) under one or more
    # contributor license agreements.  See the NOTICE file distributed with
    # this work for additional information regarding copyright ownership.
    # The ASF licenses this file to You under the Apache License, Version 2.0
    # (the "License"); you may not use this file except in compliance with
    # the License.  You may obtain a copy of the License at
    #
    #    http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    
    # see kafka.server.KafkaConfig for additional details and defaults
    
    ############################# Server Basics #############################
    
    # The id of the broker. This must be set to a unique integer for each broker.
    broker.id=1
    # Hostname and port the broker will advertise to producers and consumers. If not set, 
    # it uses the value for "listeners" if configured.  Otherwise, it will use the value
    # returned from java.net.InetAddress.getCanonicalHostName().
     
    advertised.listeners=PLAINTEXT://192.168.52.136:9092
    hostname=192.168.52.136
    listeners=PLAINTEXT://192.168.52.136:9092
    
    
    ############################# Socket Server Settings #############################
    
    # The address the socket server listens on. It will get the value returned from 
    # java.net.InetAddress.getCanonicalHostName() if not configured.
    #   FORMAT:
    #     listeners = listener_name://host_name:port
    #   EXAMPLE:
    #     listeners = PLAINTEXT://your.host.name:9092
    # Hostname and port the broker will advertise to producers and consumers. If not set, 
    # it uses the value for "listeners" if configured.  Otherwise, it will use the value
    # returned from java.net.InetAddress.getCanonicalHostName().
    #advertised.listeners=PLAINTEXT://192.168.52.36:9092
    #listeners=PLAINTEXT://localhost:9092
    # Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
    #listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL
    
    # The number of threads that the server uses for receiving requests from the network and sending responses to the network
    num.network.threads=3
    
    # The number of threads that the server uses for processing requests, which may include disk I/O
    num.io.threads=8
    
    # The send buffer (SO_SNDBUF) used by the socket server
    socket.send.buffer.bytes=102400
    
    # The receive buffer (SO_RCVBUF) used by the socket server
    socket.receive.buffer.bytes=102400
    
    # The maximum size of a request that the socket server will accept (protection against OOM)
    socket.request.max.bytes=104857600
    
    
    ############################# Log Basics #############################
    
    # A comma separated list of directories under which to store log files  不是日志
    log.dirs=/tmp/kafka-logs
    
    # The default number of log partitions per topic. More partitions allow greater
    # parallelism for consumption, but this will also result in more files across
    # the brokers.
    num.partitions=1
    
    # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
    # This value is recommended to be increased for installations with data dirs located in RAID array.
    num.recovery.threads.per.data.dir=1
    
    ############################# Internal Topic Settings  #############################
    # The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
    # For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
    offsets.topic.replication.factor=1
    transaction.state.log.replication.factor=1
    transaction.state.log.min.isr=1
    
    ############################# Log Flush Policy #############################
    
    # Messages are immediately written to the filesystem but by default we only fsync() to sync
    # the OS cache lazily. The following configurations control the flush of data to disk.
    # There are a few important trade-offs here:
    #    1. Durability: Unflushed data may be lost if you are not using replication.
    #    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
    #    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
    # The settings below allow one to configure the flush policy to flush data after a period of time or
    # every N messages (or both). This can be done globally and overridden on a per-topic basis.
    
    # The number of messages to accept before forcing a flush of data to disk
    #log.flush.interval.messages=10000
    
    # The maximum amount of time a message can sit in a log before we force a flush
    #log.flush.interval.ms=1000
    
    ############################# Log Retention Policy #############################
    
    # The following configurations control the disposal of log segments. The policy can
    # be set to delete segments after a period of time, or after a given size has accumulated.
    # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
    # from the end of the log.
    
    # The minimum age of a log file to be eligible for deletion due to age
    log.retention.hours=168
    
    # A size-based retention policy for logs. Segments are pruned from the log unless the remaining
    # segments drop below log.retention.bytes. Functions independently of log.retention.hours.
    #log.retention.bytes=1073741824
    
    # The maximum size of a log segment file. When this size is reached a new log segment will be created.
    #1G大小
    log.segment.bytes=1073741824
    
    # The interval at which log segments are checked to see if they can be deleted according
    # to the retention policies
    log.retention.check.interval.ms=300000
    
    ############################# Zookeeper #############################
    
    # Zookeeper connection string (see zookeeper docs for details).
    # This is a comma separated host:port pairs, each corresponding to a zk
    # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
    # You can also append an optional chroot string to the urls to specify the
    # root directory for all kafka znodes.
    zookeeper.connect=192.168.52.136:2181
    
    # Timeout in ms for connecting to zookeeper
    zookeeper.connection.timeout.ms=60000
    
    
    ############################# Group Coordinator Settings #############################
    
    # The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
    # The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
    # The default value for this is 3 seconds.
    # We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
    # However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
    group.initial.rebalance.delay.ms=0
    

      

    java测试项目 采用maven 组织方式

    <dependencies>
    		<dependency>
    			<groupId>junit</groupId>
    			<artifactId>junit</artifactId>
    			<version>3.8.1</version>
    			<scope>test</scope>
    		</dependency>
    		<dependency>
    			<groupId>org.apache.kafka</groupId>
    			<artifactId>kafka-clients</artifactId>
    			<version>2.4.0</version>
    		</dependency>
    	<dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>2.4.0</version>
       </dependency>
    </dependencies>

    生产消息代码

    public class ProducerDemo {
     
        private final KafkaProducer<String, String> producer;
     
        public final static String TOPIC = "test3";
     
        private ProducerDemo() {
        	
            Properties props = new Properties();
            props.put("bootstrap.servers", "192.168.52.136:9092");//xxx服务器ip
            props.put("acks", "all");//所有follower都响应了才认为消息提交成功,即"committed"
            props.put("retries", 0);//retries = MAX 无限重试,直到你意识到出现了问题:)
            props.put("batch.size", 16384);//producer将试图批处理消息记录,以减少请求次数.默认的批量处理消息字节数
            //batch.size当批量的数据大小达到设定值后,就会立即发送,不顾下面的linger.ms
            props.put("linger.ms", 1);//延迟1ms发送,这项设置将通过增加小的延迟来完成--即,不是立即发送一条记录,producer将会等待给定的延迟时间以允许其他消息记录发送,这些消息记录可以批量处理
            props.put("buffer.memory", 33554432);//producer可以用来缓存数据的内存大小。
           props.put("key.serializer","org.apache.kafka.common.serialization.IntegerSerializer");
            props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");
     
            producer = new KafkaProducer<String, String>(props);
        }
     
        public void produce() {
            int messageNo = 1;
            final int COUNT = 5;
     
            while(messageNo < COUNT) {
                String key = String.valueOf(messageNo);
                String data = String.format("hello KafkaProducer message %s from hubo liuyahui ", key);
                
                try {
    				Future f=producer.send(new ProducerRecord<String, String>(TOPIC, data));
    				System.out.println(f.get());
                } catch (Exception e) {
                    e.printStackTrace();
                }
                messageNo++;
            }
            producer.close();
        }
        public static void main(String[] args) {
             new ProducerDemo().produce();
        }
    }
    

      

    消费消息代码

    public class ConsumrTest {
    	 
        public static void main(String[] args) {
            
            String topicNmae="test3";
            String groupID="test-group";
            Properties props= new Properties();
            props.put("bootstrap.servers","192.168.52.136:9092");
            props.put("group.id",groupID);
            props.put("enable.auto.commit","true");
            props.put("auto.commit.interval.ms","1000");
            props.put("auto.offset.reset","earliest");
            props.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
            props.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
     
            KafkaConsumer<String,String> consumer=new KafkaConsumer<String, String>(props);
            consumer.subscribe(Arrays.asList(topicNmae));
            try {
                while (true){
                    ConsumerRecords<String,String> records=consumer.poll(1000);
                    for (ConsumerRecord<String,String> record:records){
                        System.out.printf("offset = %d ,key =%s, value= %s%n" ,record.offset(),record.key(),record.value());
                    }
                }
            }finally {
                consumer.close();
            }
        }
    

      

  • 相关阅读:
    用jQuery开发插件详解
    position:absolute和float会隐式的改变display类型
    链家H5项目总结
    jQuery中的选择器
    jqeury实现全选和反选
    $.extend(),与$.fn.extend() 讲解(一)
    mybatis用distinct进行查询的问题
    mybatis 动态Sql的模糊查询
    mysql
    @RequestParam和@PathVariable的区别
  • 原文地址:https://www.cnblogs.com/liuguiqian/p/12523947.html
Copyright © 2011-2022 走看看