zoukankan      html  css  js  c++  java
  • Tensoflow简单神经网络实现非线性拟合

    定义一个自动增加网络层数的函数
    权重weight的设置:在生成初始参数时,随机变量(normal distribution)会比全部为0要好很多,所以我们这里的weights为一个in_size行, out_size列的随机变量矩阵。

    Weights = tf.Variable(tf.random_normal([in_size, out_size]))
    

    biases:的推荐值不为0,所以我们这里是在0向量的基础上又加了0.1。

    biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
    
    #定义一个自动增加网络层数的函数
    # inputs:输入值、
    # in_size:输入神经元个数
    # out_size:输出神经元个数
    # activation_function:激励函数,默认的激励函数是None。
    def add_layer(inputs, in_size, out_size, activation_function=None):
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))#一个in_size行, out_size列的随机变量矩阵。
        biases = tf.Variable(tf.zeros([1, out_size])+0.1)
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    

    搭建网络

    # Author Qian Chenglong
    
    import tensorflow as tf
    import  numpy as np
    #定义一个自动增加网络层数的函数
    # inputs:输入值、
    # in_size:输入神经元个数
    # out_size:输出神经元个数
    # activation_function:激励函数,默认的激励函数是None。
    def add_layer(inputs, in_size, out_size, activation_function=None):
        Weights = tf.Variable(tf.random_normal([in_size, out_size]))#一个in_size行, out_size列的随机变量矩阵。
        biases = tf.Variable(tf.zeros([1, out_size])+0.1)
        Wx_plus_b = tf.matmul(inputs, Weights) + biases
        if activation_function is None:
            outputs = Wx_plus_b
        else:
            outputs = activation_function(Wx_plus_b)
        return outputs
    #生成数据
    x_data = np.linspace(-1,1,300, dtype=np.float32)[:, np.newaxis]
    noise = np.random.normal(0, 0.02, x_data.shape).astype(np.float32)
    y_data = np.square(x_data) - 0.5 + noise
    
    xs = tf.placeholder(tf.float32, [None, 1])
    ys = tf.placeholder(tf.float32, [None, 1])
    
    l1 = add_layer(xs, 1, 10, activation_function=tf.nn.tanh) #隐藏层
    prediction=add_layer(l1,10,1, activation_function=tf.nn.tanh) #输出层
    loss=tf.reduce_mean(tf.square(prediction-ys)) #损失函数
    
    
    train_step =tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    
    with tf.Session() as sess:
        # 变量初始化
        sess.run(tf.global_variables_initializer())
        for i in range(2000):
            sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
            if i % 50 == 0:
                # to see the step improvement
                print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))
    
    
    
  • 相关阅读:
    JSP Web第五章整理复习 JSP访问数据库
    JSP Web第四章整理复习 JSP技术基础
    JSP Web第三章整理复习 开发环境搭建
    在n个球中,任意取出m个(不放回),求共有多少种取法
    递归比较字符串是否相等
    数组求和的3种常见递归方法
    打印begin~end
    jQuery简单实现图片预加载
    HTML5语义化标签重构页面
    jQuery插件slick实现响应式移动端幻灯片图片切换特效—大全
  • 原文地址:https://www.cnblogs.com/long5683/p/12885808.html
Copyright © 2011-2022 走看看