zoukankan      html  css  js  c++  java
  • [Coding Made Simple] Longest Common Subsequence

    Given two strings, find the longest common subsequence (LCS).

    Your code should return the length of LCS.

    Clarification
    Example

    For "ABCD" and "EDCA", the LCS is "A" (or "D""C"), return 1.

    For "ABCD" and "EACB", the LCS is "AC", return 2.

    Solution 1. Recursion

    If we start to compare two characters from the end of both strings, we'll have the following possible cases.

    1. A.charAt(n1 - 1) == B.charAt(n2 - 1), then the lcs is 1 + lcs of (A[0.....n1 - 2], B[0....n2 - 2])

    2. if they are not the same, then the lcs is the max of lcs of (A[0.....n1 - 1], B[0......n2 - 2]) and lcs of (A[0.....n1 - 2], B[0.....n2 - 1])

    Both cases reduce the original problem to a smaller problem, which can be solved recursively. 

    The base case is when either the first or the second string has no more characters to be compared.

    This solution does redundant work so it is not efficient.  For example, say we have A[0....5] and B[0....5].

    assume A[5] == B[5], then we proceed to solve lcs of (A[0....4], B[0....4]);

    assume A[4] != B[4], then we need to solve lcs of (A[0....4], B[0....3]) and lcs of (A[0...3], B[0....4]);

    For lcs A[0...4], B[0...3], we may need to solve lcs of A[0....3], B[0...3];

    For lcs A[0...3], B[0...4], we may need to solve lcs of A[0....3], B[0...3] again;

    And so on.

    The bigger the two strings are, the more overlapping subproblems this recursive solution has to solve redundantly.

    Naturally to avoid overlapping subproblems, we use dynamic programming.

     1 public class Solution {
     2     public int longestCommonSubsequence(String A, String B) {
     3         if(A == null || B == null || A.length() == 0 || B.length() == 0){
     4             return 0;
     5         }
     6         return lcsRecursive(A, A.length() - 1, B, B.length() - 1);
     7     }
     8     private int lcsRecursive(String s1, int endIdx1, String s2, int endIdx2){
     9         if(endIdx1 < 0 || endIdx2 < 0){
    10             return 0;
    11         }    
    12         if(s1.charAt(endIdx1) == s2.charAt(endIdx2)){
    13             return 1 + lcsRecursive(s1, endIdx1 - 1, s2, endIdx2 - 1);
    14         }
    15         return Math.max(lcsRecursive(s1, endIdx1, s2, endIdx2 - 1), lcsRecursive(s1, endIdx1 - 1, s2, endIdx2));
    16     }
    17 }

    Solution 2. Dynamic Programming, O(n^2) runtime, O(n^2) space

    lcs[i][j]: the longest common subsequence between A[0.... i - 1] and B[0....j - 1]

    State function is the same with the recursive formula in solution 1.

     1 public class Solution {
     2     public int longestCommonSubsequence(String A, String B) {
     3         if(A == null || B == null || A.length() == 0 || B.length() == 0){
     4             return 0;
     5         }
     6         int[][] lcs = new int[A.length() + 1][B.length() + 1];
     7         for(int i = 0; i <= A.length(); i++){
     8             lcs[i][0] = 0;
     9         }
    10         for(int i = 0; i <= B.length(); i++){
    11             lcs[0][i] = 0;
    12         }
    13         for(int i = 1; i <= A.length(); i++){
    14             for(int j = 1; j <= B.length(); j++){
    15                 if(A.charAt(i - 1) == B.charAt(j - 1)){
    16                     lcs[i][j] = 1 + lcs[i - 1][j - 1];
    17                 }
    18                 else{
    19                     lcs[i][j] = Math.max(lcs[i - 1][j], lcs[i][j - 1]);
    20                 }
    21             }
    22         }
    23         return lcs[A.length()][B.length()];
    24     }
    25 }

    Solution 3. Dynamic Programming, with optimized O(n) space 

    In solution 2, lcs[i][j] is only related to row i - 1 and i, so we can apply the rolling array techinque to 

    make the O(n^2) space usage to be O(n) space usage.

     1 public class Solution {
     2     public int longestCommonSubsequence(String A, String B) {
     3         if(A == null || B == null || A.length() == 0 || B.length() == 0){
     4             return 0;
     5         }
     6         int[][] lcs = new int[2][B.length() + 1];
     7         for(int i = 0; i <= B.length(); i++){
     8             lcs[0][i] = 0;
     9         }
    10         for(int i = 1; i <= A.length(); i++){
    11             for(int j = 1; j <= B.length(); j++){
    12                 if(A.charAt(i - 1) == B.charAt(j - 1)){
    13                     lcs[i % 2][j] = 1 + lcs[(i - 1) % 2][j - 1];
    14                 }
    15                 else{
    16                     lcs[i % 2][j] = Math.max(lcs[(i - 1) % 2][j], lcs[i % 2][j - 1]);
    17                 }
    18             }
    19         }
    20         return lcs[A.length() % 2][B.length()];
    21     }
    22 }

     Follow up question: Can you reconstruct one Longest Common Subsequence?

    To do this, we must use the O(n^2) space dp solution as it keeps all the intermediate results that can be used to reconstruct one LCS.

     1 public ArrayList<Character> reconstructLCS(String A, String B, int[][] lcs){
     2     ArrayList<Character> result = new ArrayList<Character>();
     3     int i = lcs.length - 1;
     4     int j = lcs[0].length - 1;
     5     while(i >= 1 && j >= 1){
     6         if(A.charAt(i - 1) == B.charAt(j - 1)){
     7             result.add(A.charAt(i - 1));
     8             i--;
     9             j--;
    10         }
    11         else if(lcs[i - 1][j] > lcs[i][j - 1]){
    12             i--;
    13         }
    14         else{
    15             j--;
    16         }
    17     }
    18     return result;
    19 }

    Related Problems

    Longest Repeating Subsequence 

    Edit Distance

    Longest Common Substring 

  • 相关阅读:
    IP分类:A,B,C,D,E五类
    Makefile之“=”、":="、“+=”、“?=”
    Makefile之字符串函数
    Makefile之嵌套执行make
    vi中使用“/”查找字符
    Makefile学习之显示命令与出错命令
    【转】Unity中写GLSL(一)—— 简单的diffuse color
    关于编译GITHUB上的工程
    认识了一个新的手机游戏剖析工具- SnapDragon Profiler
    U3D资料收藏
  • 原文地址:https://www.cnblogs.com/lz87/p/7221335.html
Copyright © 2011-2022 走看看