zoukankan      html  css  js  c++  java
  • [LintCode] Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

    You can only move either down or right at any point in time.

    Solution 1. Recursion, DFS 

     1 public class Solution {
     2     private int minPath = Integer.MAX_VALUE;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         traverse(grid, 0, 0, 0);
     8         return minPath;
     9     }
    10     private void traverse(int[][] grid, int x, int y, int sum){
    11         int m = grid.length, n = grid[0].length;
    12         if(x >= m || y >= n) {
    13             return;
    14         }
    15         sum += grid[x][y];
    16         if(x == m - 1 && y == n - 1){
    17             if(sum < minPath){
    18                 minPath = sum;
    19             }
    20             return;
    21         }
    22         traverse(grid, x + 1, y, sum);  
    23         traverse(grid, x, y + 1, sum); 
    24     }
    25 }

    Solution 2. DFS, divide and conquer + memoization

     1 public class Solution {
     2     private int[][] hash;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         hash = new int[grid.length][grid[0].length];
     8         for(int i = 0; i < hash.length; i++){
     9             for(int j = 0; j < hash[0].length; j++){
    10                 hash[i][j] = Integer.MAX_VALUE;
    11             }
    12         }
    13         return divideConquer(grid, 0, 0);
    14     }
    15     private int divideConquer(int[][] grid, int x, int y){
    16         int m = grid.length, n = grid[0].length;
    17         if(x == m - 1 && y == n - 1){
    18             return grid[x][y];
    19         }
    20         if(x >= m || y >= n){
    21             return Integer.MAX_VALUE;
    22         }
    23         if(hash[x][y] != Integer.MAX_VALUE){
    24             return hash[x][y];
    25         }
    26         hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y));
    27         return hash[x][y];
    28     }
    29 }

    Solution 3.  Dynamic Programming 

    State: f[i][j],  the min distance from (0, 0) to (i, j)

    Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])

    Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] f = new int[rowLen][colLen];
     8         f[0][0] = grid[0][0];
     9         for(int row = 1; row < rowLen; row++){
    10             f[row][0] = grid[row][0] + f[row - 1][0]; 
    11         }
    12         for(int col = 1; col < colLen; col++){
    13             f[0][col] = grid[0][col] + f[0][col - 1];
    14         }
    15         for(int i = 1; i < rowLen; i++){
    16             for(int j = 1; j < colLen; j++){
    17                 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]);
    18             }
    19         }
    20         return f[rowLen - 1][colLen - 1];
    21     }
    22 }

    Solution 4. DP with space optimization

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] T = new int[2][colLen];
     8         T[0][0] = grid[0][0];
     9         for(int j = 1; j < colLen; j++){
    10             T[0][j] = T[0][j - 1] + grid[0][j];
    11         }
    12         for(int i = 1; i < rowLen; i++){
    13             T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0];
    14             for(int j = 1; j < colLen; j++){
    15                 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]);
    16             }
    17         }
    18         return T[(rowLen - 1) % 2][colLen - 1];
    19     }
    20 }

    Related Problems

    Triangle 

    Binary Tree Maximum Path Sum 

  • 相关阅读:
    PHP中几种加密形式
    PHP 常用的header头部定义汇总
    php二维数组排序方法(array_multisort,usort)
    js刷新当前页面的几种方法
    chosen.jquery插件的使用
    [NOI2006] 网络收费
    [NOI2002] 贪吃的九头蛇
    [NOI2013] 向量内积
    [TJOI2019] 甲苯先生的线段树
    [CF750G] New Year and Binary Tree Paths
  • 原文地址:https://www.cnblogs.com/lz87/p/7498455.html
Copyright © 2011-2022 走看看