zoukankan      html  css  js  c++  java
  • [LintCode] Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

    You can only move either down or right at any point in time.

    Solution 1. Recursion, DFS 

     1 public class Solution {
     2     private int minPath = Integer.MAX_VALUE;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         traverse(grid, 0, 0, 0);
     8         return minPath;
     9     }
    10     private void traverse(int[][] grid, int x, int y, int sum){
    11         int m = grid.length, n = grid[0].length;
    12         if(x >= m || y >= n) {
    13             return;
    14         }
    15         sum += grid[x][y];
    16         if(x == m - 1 && y == n - 1){
    17             if(sum < minPath){
    18                 minPath = sum;
    19             }
    20             return;
    21         }
    22         traverse(grid, x + 1, y, sum);  
    23         traverse(grid, x, y + 1, sum); 
    24     }
    25 }

    Solution 2. DFS, divide and conquer + memoization

     1 public class Solution {
     2     private int[][] hash;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         hash = new int[grid.length][grid[0].length];
     8         for(int i = 0; i < hash.length; i++){
     9             for(int j = 0; j < hash[0].length; j++){
    10                 hash[i][j] = Integer.MAX_VALUE;
    11             }
    12         }
    13         return divideConquer(grid, 0, 0);
    14     }
    15     private int divideConquer(int[][] grid, int x, int y){
    16         int m = grid.length, n = grid[0].length;
    17         if(x == m - 1 && y == n - 1){
    18             return grid[x][y];
    19         }
    20         if(x >= m || y >= n){
    21             return Integer.MAX_VALUE;
    22         }
    23         if(hash[x][y] != Integer.MAX_VALUE){
    24             return hash[x][y];
    25         }
    26         hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y));
    27         return hash[x][y];
    28     }
    29 }

    Solution 3.  Dynamic Programming 

    State: f[i][j],  the min distance from (0, 0) to (i, j)

    Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])

    Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] f = new int[rowLen][colLen];
     8         f[0][0] = grid[0][0];
     9         for(int row = 1; row < rowLen; row++){
    10             f[row][0] = grid[row][0] + f[row - 1][0]; 
    11         }
    12         for(int col = 1; col < colLen; col++){
    13             f[0][col] = grid[0][col] + f[0][col - 1];
    14         }
    15         for(int i = 1; i < rowLen; i++){
    16             for(int j = 1; j < colLen; j++){
    17                 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]);
    18             }
    19         }
    20         return f[rowLen - 1][colLen - 1];
    21     }
    22 }

    Solution 4. DP with space optimization

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] T = new int[2][colLen];
     8         T[0][0] = grid[0][0];
     9         for(int j = 1; j < colLen; j++){
    10             T[0][j] = T[0][j - 1] + grid[0][j];
    11         }
    12         for(int i = 1; i < rowLen; i++){
    13             T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0];
    14             for(int j = 1; j < colLen; j++){
    15                 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]);
    16             }
    17         }
    18         return T[(rowLen - 1) % 2][colLen - 1];
    19     }
    20 }

    Related Problems

    Triangle 

    Binary Tree Maximum Path Sum 

  • 相关阅读:
    hadoop中的序列化
    web服务端的架构演变
    网易考拉规则引擎平台架构设计与实践
    spring分布式事务学习笔记(2)
    质量评估面面观--聊一聊软件上线前的质量评估
    用script标签加载
    Windows下命令行下启动ORACLE服务
    笔记本优化八项
    C#编程总结(一)序列化
    学习之路十四:客户端调用WCF服务的几种方法小议
  • 原文地址:https://www.cnblogs.com/lz87/p/7498455.html
Copyright © 2011-2022 走看看