zoukankan      html  css  js  c++  java
  • [LintCode] Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

    You can only move either down or right at any point in time.

    Solution 1. Recursion, DFS 

     1 public class Solution {
     2     private int minPath = Integer.MAX_VALUE;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         traverse(grid, 0, 0, 0);
     8         return minPath;
     9     }
    10     private void traverse(int[][] grid, int x, int y, int sum){
    11         int m = grid.length, n = grid[0].length;
    12         if(x >= m || y >= n) {
    13             return;
    14         }
    15         sum += grid[x][y];
    16         if(x == m - 1 && y == n - 1){
    17             if(sum < minPath){
    18                 minPath = sum;
    19             }
    20             return;
    21         }
    22         traverse(grid, x + 1, y, sum);  
    23         traverse(grid, x, y + 1, sum); 
    24     }
    25 }

    Solution 2. DFS, divide and conquer + memoization

     1 public class Solution {
     2     private int[][] hash;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         hash = new int[grid.length][grid[0].length];
     8         for(int i = 0; i < hash.length; i++){
     9             for(int j = 0; j < hash[0].length; j++){
    10                 hash[i][j] = Integer.MAX_VALUE;
    11             }
    12         }
    13         return divideConquer(grid, 0, 0);
    14     }
    15     private int divideConquer(int[][] grid, int x, int y){
    16         int m = grid.length, n = grid[0].length;
    17         if(x == m - 1 && y == n - 1){
    18             return grid[x][y];
    19         }
    20         if(x >= m || y >= n){
    21             return Integer.MAX_VALUE;
    22         }
    23         if(hash[x][y] != Integer.MAX_VALUE){
    24             return hash[x][y];
    25         }
    26         hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y));
    27         return hash[x][y];
    28     }
    29 }

    Solution 3.  Dynamic Programming 

    State: f[i][j],  the min distance from (0, 0) to (i, j)

    Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])

    Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] f = new int[rowLen][colLen];
     8         f[0][0] = grid[0][0];
     9         for(int row = 1; row < rowLen; row++){
    10             f[row][0] = grid[row][0] + f[row - 1][0]; 
    11         }
    12         for(int col = 1; col < colLen; col++){
    13             f[0][col] = grid[0][col] + f[0][col - 1];
    14         }
    15         for(int i = 1; i < rowLen; i++){
    16             for(int j = 1; j < colLen; j++){
    17                 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]);
    18             }
    19         }
    20         return f[rowLen - 1][colLen - 1];
    21     }
    22 }

    Solution 4. DP with space optimization

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] T = new int[2][colLen];
     8         T[0][0] = grid[0][0];
     9         for(int j = 1; j < colLen; j++){
    10             T[0][j] = T[0][j - 1] + grid[0][j];
    11         }
    12         for(int i = 1; i < rowLen; i++){
    13             T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0];
    14             for(int j = 1; j < colLen; j++){
    15                 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]);
    16             }
    17         }
    18         return T[(rowLen - 1) % 2][colLen - 1];
    19     }
    20 }

    Related Problems

    Triangle 

    Binary Tree Maximum Path Sum 

  • 相关阅读:
    JMeter+ant+jenkins自动化持续集成
    如何保证线程按顺序执行
    Java多线程和死锁
    java基础总结
    一、java自带的观察者模式
    一.HttpClient、JsonPath、JsonObject运用
    二.创建maven工程及下载需要的jar包
    一.Maven的安装和配置整理
    sql 关键词语句
    PHP5常量
  • 原文地址:https://www.cnblogs.com/lz87/p/7498455.html
Copyright © 2011-2022 走看看