zoukankan      html  css  js  c++  java
  • [LintCode] Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

    You can only move either down or right at any point in time.

    Solution 1. Recursion, DFS 

     1 public class Solution {
     2     private int minPath = Integer.MAX_VALUE;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         traverse(grid, 0, 0, 0);
     8         return minPath;
     9     }
    10     private void traverse(int[][] grid, int x, int y, int sum){
    11         int m = grid.length, n = grid[0].length;
    12         if(x >= m || y >= n) {
    13             return;
    14         }
    15         sum += grid[x][y];
    16         if(x == m - 1 && y == n - 1){
    17             if(sum < minPath){
    18                 minPath = sum;
    19             }
    20             return;
    21         }
    22         traverse(grid, x + 1, y, sum);  
    23         traverse(grid, x, y + 1, sum); 
    24     }
    25 }

    Solution 2. DFS, divide and conquer + memoization

     1 public class Solution {
     2     private int[][] hash;
     3     public int minPathSum(int[][] grid) {
     4         if(grid == null || grid.length == 0 || grid[0].length == 0){
     5             return -1;
     6         }
     7         hash = new int[grid.length][grid[0].length];
     8         for(int i = 0; i < hash.length; i++){
     9             for(int j = 0; j < hash[0].length; j++){
    10                 hash[i][j] = Integer.MAX_VALUE;
    11             }
    12         }
    13         return divideConquer(grid, 0, 0);
    14     }
    15     private int divideConquer(int[][] grid, int x, int y){
    16         int m = grid.length, n = grid[0].length;
    17         if(x == m - 1 && y == n - 1){
    18             return grid[x][y];
    19         }
    20         if(x >= m || y >= n){
    21             return Integer.MAX_VALUE;
    22         }
    23         if(hash[x][y] != Integer.MAX_VALUE){
    24             return hash[x][y];
    25         }
    26         hash[x][y] = grid[x][y] + Math.min(divideConquer(grid, x, y + 1), divideConquer(grid, x + 1, y));
    27         return hash[x][y];
    28     }
    29 }

    Solution 3.  Dynamic Programming 

    State: f[i][j],  the min distance from (0, 0) to (i, j)

    Function: f[i][j] = grid[i][j] + Math.min(f[i - 1][j], f[i][j - 1])

    Initialization: f[i][0] = grid[i][0] + f[i - 1][0]; f[0][j] = grid[0][j] + f[0][j - 1]

    Answer: f[m - 1][n - 1]

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] f = new int[rowLen][colLen];
     8         f[0][0] = grid[0][0];
     9         for(int row = 1; row < rowLen; row++){
    10             f[row][0] = grid[row][0] + f[row - 1][0]; 
    11         }
    12         for(int col = 1; col < colLen; col++){
    13             f[0][col] = grid[0][col] + f[0][col - 1];
    14         }
    15         for(int i = 1; i < rowLen; i++){
    16             for(int j = 1; j < colLen; j++){
    17                 f[i][j] = grid[i][j] + Math.min(f[i][j - 1], f[i - 1][j]);
    18             }
    19         }
    20         return f[rowLen - 1][colLen - 1];
    21     }
    22 }

    Solution 4. DP with space optimization

     1 public class Solution {
     2     public int minPathSum(int[][] grid) {
     3         if(grid == null || grid.length == 0 || grid[0].length == 0){
     4             return -1;
     5         }
     6         int rowLen = grid.length, colLen = grid[0].length;
     7         int[][] T = new int[2][colLen];
     8         T[0][0] = grid[0][0];
     9         for(int j = 1; j < colLen; j++){
    10             T[0][j] = T[0][j - 1] + grid[0][j];
    11         }
    12         for(int i = 1; i < rowLen; i++){
    13             T[i % 2][0] = T[(i - 1) % 2][0] + grid[i][0];
    14             for(int j = 1; j < colLen; j++){
    15                 T[i % 2][j] = grid[i][j] + Math.min(T[(i - 1) % 2][j], T[i % 2][j - 1]);
    16             }
    17         }
    18         return T[(rowLen - 1) % 2][colLen - 1];
    19     }
    20 }

    Related Problems

    Triangle 

    Binary Tree Maximum Path Sum 

  • 相关阅读:
    Bete冲刺第二阶段
    Beta版本冲刺计划及安排
    Bete冲刺第一阶段
    软件工程实践总结
    用户试用体验报告
    Bata版本冲刺计划及安排
    scrum阶段总结
    关于 微软必应词典客户端 的案例分析
    第三次结对编程
    结对项目之需求分析与原型模型设计
  • 原文地址:https://www.cnblogs.com/lz87/p/7498455.html
Copyright © 2011-2022 走看看