import os import json def get_annotation_dict(input_folder_path, word2number_dict): label_dict = {} father_file_list = os.listdir(input_folder_path) for father_file in father_file_list: full_father_file = os.path.join(input_folder_path, father_file) son_file_list = os.listdir(full_father_file) for image_name in son_file_list: label_dict[os.path.join(full_father_file, image_name)] = word2number_dict[father_file] return label_dict def save_json(label_dict, json_path): with open(json_path, 'w') as json_path: json.dump(label_dict, json_path) print("label json file has been generated successfully!")
- generate_annotation_json.py
总共有七种分类图片,类别的名称就是每个文件夹名称
generate_annotation_json.py是为了得到图片标注的label_dict。通过这个代码块可以获得我们需要的图片标注字典,key是图片具体地址, value是图片的类别,具体实例如下:
{ "/images/hangs/862e67a8-5bd9-41f1-8c6d-876a3cb270df.JPG": 6, "/images/tags/adc264af-a76b-4477-9573-ac6c435decab.JPG": 3, "/images/tags/fd231f5a-b42c-43ba-9e9d-4abfbaf38853.JPG": 3, "/images/hangs/2e47d877-1954-40d6-bfa2-1b8e3952ebf9.jpg": 6, "/images/tileds/a07beddc-4b39-4865-8ee2-017e6c257e92.png": 5, "/images/models/642015c8-f29d-4930-b1a9-564f858c40e5.png": 4 }
- generate_tfrecord.py
import os
import tensorflow as tf
import io
from PIL import Image
from generate_annotation_json import get_annotation_dict
flags = tf.app.flags
flags.DEFINE_string('images_dir',
'/data2/raycloud/jingxiong_datasets/six_classes/images',
'Path to image(directory)')
flags.DEFINE_string('annotation_path',
'/data1/humaoc_file/classify/data/annotations/annotations.json',
'Path to annotation')
flags.DEFINE_string('record_path',
'/data1/humaoc_file/classify/data/train_tfrecord/train.record',
'Path to TFRecord')
FLAGS = flags.FLAGS
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def process_image_channels(image):
process_flag = False
# process the 4 channels .png
if image.mode == 'RGBA':
r, g, b, a = image.split()
image = Image.merge("RGB", (r,g,b))
process_flag = True
# process the channel image
elif image.mode != 'RGB':
image = image.convert("RGB")
process_flag = True
return image, process_flag
def process_image_reshape(image, resize):
width, height = image.size
if resize is not None:
if width > height:
width = int(width * resize / height)
height = resize
else:
width = resize
height = int(height * resize / width)
image = image.resize((width, height), Image.ANTIALIAS)
return image
def create_tf_example(image_path, label, resize=None):
#以二进制格式打开图片
with tf.gfile.GFile(image_path, 'rb') as fid:
encode_jpg = fid.read()
encode_jpg_io = io.BytesIO(encode_jpg)
image = Image.open(encode_jpg_io)
# process png pic with four channels,将图片转为RGB
image, process_flag = process_image_channels(image)
# reshape image
image = process_image_reshape(image, resize)
if process_flag == True or resize is not None:
bytes_io = io.BytesIO()
image.save(bytes_io, format='JPEG')
encoded_jpg = bytes_io.getvalue()
width, height = image.size
tf_example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded': bytes_feature(encode_jpg),
'image/format': bytes_feature(b'jpg'),
'image/class/label': int64_feature(label),
'image/height': int64_feature(height),
'image/width': int64_feature(width)
}
))
return tf_example
def generate_tfrecord(annotation_dict, record_path, resize=None):
num_tf_example = 0
#writer就是我们TFrecord生成器
writer = tf.python_io.TFRecordWriter(record_path)
for image_path, label in annotation_dict.items():
#tf.gfile.GFile获取文本操作句柄,类似于python提供的文本操作open()函数
#filename是要打开的文件名,mode是以何种方式去读写,将会返回一个文本操作句柄。
if not tf.gfile.GFile(image_path):
print("{} does not exist".format(image_path))
tf_example = create_tf_example(image_path, label, resize)
#tf_example.SerializeToString()是将Example中的map压缩为二进制文件
writer.write(tf_example.SerializeToString())
num_tf_example += 1
if num_tf_example % 100 == 0:
print("Create %d TF_Example" % num_tf_example)
writer.close()
print("{} tf_examples has been created successfully, which are saved in {}".format(num_tf_example, record_path))
def main(_):
word2number_dict = {
"combinations": 0,
"details": 1,
"sizes": 2,
"tags": 3,
"models": 4,
"tileds": 5,
"hangs": 6
}
# 图片路径
images_dir = FLAGS.images_dir
#annotation_path = FLAGS.annotation_path
#生成TFRecord文件的路径
record_path = FLAGS.record_path
annotation_dict = get_annotation_dict(images_dir, word2number_dict)
generate_tfrecord(annotation_dict, record_path)
if __name__ == '__main__':
tf.app.run()
总结:1.制作数据(图片路径和标签)
2.利用tf.python_io.TFRecordWriter创建一个writer,就是我们TFrecord生成器
3.遍历数据集,以二进制形式打开图片
4.利用tf.train.Example将图片,图片格式,标签和长宽进行保存
5然后利用writer.write(tf_example.SerializeToString())将tf.train.Example存储的数据格式写入TFRecord即可
参考链接:https://www.jianshu.com/p/b480e5fcb638