Dubbo提供了哪些负载均衡机制?如何实现的?
LoadBalance接口:可以看出,通过SPI机制默认为RandomLoadBalance,生成的适配器类执行select()方法。
1 /**
2 * LoadBalance. (SPI, Singleton, ThreadSafe)
3 * <p>
4 * <a href="http://en.wikipedia.org/wiki/Load_balancing_(computing)">Load-Balancing</a>
5 *
6 * @see com.alibaba.dubbo.rpc.cluster.Cluster#join(Directory)
7 */
8 @SPI(RandomLoadBalance.NAME)
9 public interface LoadBalance {
10
11 /**
12 * select one invoker in list.
13 *
14 * @param invokers invokers.
15 * @param url refer url
16 * @param invocation invocation.
17 * @return selected invoker.
18 */
19 @Adaptive("loadbalance")
20 <T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException;
21
22 }
实现类的基本类图如下所示:
0、AbstractLoadBalance是LoadBalance接口的默认实现抽象类,为子类提供了实现框架。我们来看看此类具体的实现:
(1)主要方法当然是select(),通过选择实现了负载均衡策略。实现主要是调用doSelect()方法,它是个抽象方法,留给具体子类实现不同的负载均衡策略;
(2)getWeight()方法计算出invoker权重,计算公式为:weight = (int) (uptime(提供者正常运行时间) / warmup(升温时间) /weight(设定权重)))
1 protected int getWeight(Invoker<?> invoker, Invocation invocation) {
2 int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
3 if (weight > 0) {
4 long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L);
5 if (timestamp > 0L) {
6 int uptime = (int) (System.currentTimeMillis() - timestamp);
7 int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP);
8 if (uptime > 0 && uptime < warmup) {
9 weight = calculateWarmupWeight(uptime, warmup, weight);
10 }
11 }
12 }
13 return weight;
14 }
1、Random LoadBalance:随机,按权重设置随机概率。
在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。
RandomLoadBalance子类,主要通过doSelect()实现按权重的随机算法,实现逻辑为:
(1)计算总权重;
(2)如果没有设置权重或者所有权重都一样,直接从invokers列表随机返回一个;
(3)否则:使用总权重随机计算一个offset(偏移量),循环invokers列表,offset=offset -(当前invoker权重),即剩余权重,然后返回第一个大于offset权重的invoker;此算法兼顾了权重和轮询(千重相同则轮询,权重不同则从大到小的节点顺序轮询选中)两个因素。
具体实现如下:
1 protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
2 int length = invokers.size(); // Number of invokers
3 int totalWeight = 0; // The sum of weights
4 boolean sameWeight = true; // Every invoker has the same weight?
5 for (int i = 0; i < length; i++) {
6 int weight = getWeight(invokers.get(i), invocation);
7 totalWeight += weight; // Sum
8 if (sameWeight && i > 0
9 && weight != getWeight(invokers.get(i - 1), invocation)) {
10 sameWeight = false;
11 }
12 }
13 if (totalWeight > 0 && !sameWeight) {
14 // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
15 int offset = random.nextInt(totalWeight);
16 // Return a invoker based on the random value.
17 for (int i = 0; i < length; i++) {
18 offset -= getWeight(invokers.get(i), invocation);
19 if (offset < 0) {
20 return invokers.get(i);
21 }
22 }
23 }
24 // If all invokers have the same weight value or totalWeight=0, return evenly.
25 return invokers.get(random.nextInt(length));
26 }
2、RoundRobin LoadBalance:轮循,按公约后的权重设置轮循比率。
存在慢的提供者累积请求的问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。
RoundRobinLoadBalance子类,用doSelect()实现了按公约后的权重设置轮训比率,
1 protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
//一个service接口的一个方法为一个key
2 String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
3 int length = invokers.size(); // Number of invokers
4 int maxWeight = 0; // The maximum weight
5 int minWeight = Integer.MAX_VALUE; // The minimum weight
6 final LinkedHashMap<Invoker<T>, IntegerWrapper> invokerToWeightMap = new LinkedHashMap<Invoker<T>, IntegerWrapper>();
7 int weightSum = 0;
//轮训计算总权重值、最大权重值、最小权重值
8 for (int i = 0; i < length; i++) {
9 int weight = getWeight(invokers.get(i), invocation);
10 maxWeight = Math.max(maxWeight, weight); // Choose the maximum weight
11 minWeight = Math.min(minWeight, weight); // Choose the minimum weight
12 if (weight > 0) {
13 invokerToWeightMap.put(invokers.get(i), new IntegerWrapper(weight));
14 weightSum += weight;
15 }
16 }
//给每个请求方法设置一个原子Integer
17 AtomicPositiveInteger sequence = sequences.get(key);
18 if (sequence == null) {
19 sequences.putIfAbsent(key, new AtomicPositiveInteger());
20 sequence = sequences.get(key);
21 }
22 int currentSequence = sequence.getAndIncrement();
23 if (maxWeight > 0 && minWeight < maxWeight) {
24 int mod = currentSequence % weightSum;
25 for (int i = 0; i < maxWeight; i++) {
26 for (Map.Entry<Invoker<T>, IntegerWrapper> each : invokerToWeightMap.entrySet()) {
27 final Invoker<T> k = each.getKey();
28 final IntegerWrapper v = each.getValue();
29 if (mod == 0 && v.getValue() > 0) {
30 return k;
31 }
32 if (v.getValue() > 0) {
33 v.decrement();
34 mod--;
35 }
36 }
37 }
38 }
39 // Round robin
40 return invokers.get(currentSequence % length);
41 }
算法原理及实现讨论另外写了一篇博客,见:《负载均衡算法WeightedRoundRobin(加权轮询)简介及算法实现》
3、LeastActive LoadBalance:最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差,即响应一次请求所花费的时长。
使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。
算法实现逻辑为:
假如节点活跃数依次为{Node0=3ms,Node1=6ms,Node2=2ms,Node3=2ms,Node4=4ms},
(1)没有设置权重,或者权重都一样的情况下,遍历所有节点,找出节点中最小活跃数的节点,结果为{Node2=2ms,Node3=2ms};
(2)按照算法约束:相同活跃数的随机取,则从{Node2,Node3}中随机取出一个节点返回;
(3)设置了权重,且权重不一样的情况下,从最小活跃数子集{Node2,Node3}中取出权重大的一个节点返回。具体实现与随机访问算法Random LoadBalance类似,构造一个考虑了权重和轮询(多个相同权重的节点轮询选择)两个因素的算法,使用总权重随机计算一个offset(偏移量),循环invokers列表,offset = offset -(当前invoker权重),即剩余权重,然后返回第一个大于offset权重的invoker。
具体算法实现如下:
1 protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
2 int length = invokers.size(); // Number of invokers
3 int leastActive = -1; // 记录最少的活跃数
4 int leastCount = 0; // 拥有最少活跃数,且活跃数相同的节点个数
5 int[] leastIndexs = new int[length]; // 最少活跃数节点索引数组(数组内节点的活跃数相同)
6 int totalWeight = 0; // The sum of weights
7 int firstWeight = 0; // Initial value, used for comparision
8 boolean sameWeight = true; // Every invoker has the same weight value?
9 for (int i = 0; i < length; i++) {
10 Invoker<T> invoker = invokers.get(i);
11 int active = RpcStatus.getStatus(invoker.getUrl(), invocation.getMethodName()).getActive(); //从上下文记录中取得方法的活跃数 Active number
12 int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT); // Weight
13 if (leastActive == -1 || active < leastActive) { // 当找到一个更小的活跃数节点时,重置变量Restart, when find a invoker having smaller least active value.
14 leastActive = active; // Record the current least active value
15 leastCount = 1; // Reset leastCount, count again based on current leastCount
16 leastIndexs[0] = i; // Reset
17 totalWeight = weight; // Reset
18 firstWeight = weight; // Record the weight the first invoker
19 sameWeight = true; // Reset, every invoker has the same weight value?
20 } else if (active == leastActive) { // If current invoker's active value equals with leaseActive, then accumulating.
21 leastIndexs[leastCount++] = i; // Record index number of this invoker
22 totalWeight += weight; // Add this invoker's weight to totalWeight.
23 // If every invoker has the same weight?
24 if (sameWeight && i > 0
25 && weight != firstWeight) {
26 sameWeight = false;
27 }
28 }
29 }
30 // assert(leastCount > 0)
31 if (leastCount == 1) {
32 // If we got exactly one invoker having the least active value, return this invoker directly.
33 return invokers.get(leastIndexs[0]);
34 }
35 if (!sameWeight && totalWeight > 0) {
36 // If (not every invoker has the same weight & at least one invoker's weight>0), select randomly based on totalWeight.
//考虑了权重和轮询(多个相同权重的节点轮询选择)两个因素的算法,使用总权重随机计算一个offset(偏移量),循环invokers列表,offset = offset -(当前invoker权重),即剩余权重,然后返回第一个大于offset权重的invoker
37 int offsetWeight = random.nextInt(totalWeight);
38 // Return a invoker based on the random value.
39 for (int i = 0; i < leastCount; i++) {
40 int leastIndex = leastIndexs[i];
41 offsetWeight -= getWeight(invokers.get(leastIndex), invocation);
42 if (offsetWeight <= 0)
43 return invokers.get(leastIndex);
44 }
45 }
46 // If all invokers have the same weight value or totalWeight=0, return evenly.
47 return invokers.get(leastIndexs[random.nextInt(leastCount)]);
48 }
4、ConsistentHash LoadBalance:一致性哈希。适用场景为:相同参数的请求始终发送到同一个提供者。
- 当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。
- 具体算法原理和实现讨论另外写了一篇博客,见:《一致性哈希算法原理分析及实现》
- 缺省只对第一个参数 Hash,如果要修改,请配置
<dubbo:parameter key="hash.arguments" value="0,1" />
- 缺省用 160 份虚拟节点,如果要修改,请配置
<dubbo:parameter key="hash.nodes" value="320" />
具体dubbo实现如下:
1 private static final class ConsistentHashSelector<T> {
2
3 private final TreeMap<Long, Invoker<T>> virtualInvokers;
4
5 private final int replicaNumber;
6
7 private final int identityHashCode;
8
9 private final int[] argumentIndex;
10
11 ConsistentHashSelector(List<Invoker<T>> invokers, String methodName, int identityHashCode) {
12 this.virtualInvokers = new TreeMap<Long, Invoker<T>>();
13 this.identityHashCode = identityHashCode;
14 URL url = invokers.get(0).getUrl();
//没有设置,默认虚拟节点(分片)数160个
15 this.replicaNumber = url.getMethodParameter(methodName, "hash.nodes", 160);
16 String[] index = Constants.COMMA_SPLIT_PATTERN.split(url.getMethodParameter(methodName, "hash.arguments", "0"));
17 argumentIndex = new int[index.length];
18 for (int i = 0; i < index.length; i++) {
19 argumentIndex[i] = Integer.parseInt(index[i]);
20 }
21 for (Invoker<T> invoker : invokers) {
22 String address = invoker.getUrl().getAddress();
23 for (int i = 0; i < replicaNumber / 4; i++) {
24 byte[] digest = md5(address + i);
25 for (int h = 0; h < 4; h++) {
26 long m = hash(digest, h);
27 virtualInvokers.put(m, invoker);
28 }
29 }
30 }
31 }
32
33 public Invoker<T> select(Invocation invocation) {
34 String key = toKey(invocation.getArguments());
35 byte[] digest = md5(key);
36 return selectForKey(hash(digest, 0));
37 }
38
39 private String toKey(Object[] args) {
40 StringBuilder buf = new StringBuilder();
41 for (int i : argumentIndex) {
42 if (i >= 0 && i < args.length) {
43 buf.append(args[i]);
44 }
45 }
46 return buf.toString();
47 }
48
49 private Invoker<T> selectForKey(long hash) {
50 Invoker<T> invoker;
51 Long key = hash;
52 if (!virtualInvokers.containsKey(key)) {
53 SortedMap<Long, Invoker<T>> tailMap = virtualInvokers.tailMap(key);
54 if (tailMap.isEmpty()) {
55 key = virtualInvokers.firstKey();
56 } else {
57 key = tailMap.firstKey();
58 }
59 }
60 invoker = virtualInvokers.get(key);
61 return invoker;
62 }
63
64 private long hash(byte[] digest, int number) {
65 return (((long) (digest[3 + number * 4] & 0xFF) << 24)
66 | ((long) (digest[2 + number * 4] & 0xFF) << 16)
67 | ((long) (digest[1 + number * 4] & 0xFF) << 8)
68 | (digest[number * 4] & 0xFF))
69 & 0xFFFFFFFFL;
70 }
71
72 private byte[] md5(String value) {
73 MessageDigest md5;
74 try {
75 md5 = MessageDigest.getInstance("MD5");
76 } catch (NoSuchAlgorithmException e) {
77 throw new IllegalStateException(e.getMessage(), e);
78 }
79 md5.reset();
80 byte[] bytes;
81 try {
82 bytes = value.getBytes("UTF-8");
83 } catch (UnsupportedEncodingException e) {
84 throw new IllegalStateException(e.getMessage(), e);
85 }
86 md5.update(bytes);
87 return md5.digest();
88 }
89
90 }
配置:
服务端服务级别:<dubbo:service interface="..." loadbalance="roundrobin" />
服务端方法级别:<dubbo:service interface="..."><dubbo:method name="..." loadbalance="roundrobin"/>
</dubbo:service>
客户端服务级别:<dubbo:
reference
interface="..." loadbalance="roundrobin" />
客户端方法级别:<dubbo:
reference
interface="..."><dubbo:method name="..." loadbalance="roundrobin"/></dubbo:
reference
>