zoukankan      html  css  js  c++  java
  • PAT 1017 Queueing at Bank

    Suppose a bank has K windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. All the customers have to wait in line behind the yellow line, until it is his/her turn to be served and there is a window available. It is assumed that no window can be occupied by a single customer for more than 1 hour.

    Now given the arriving time T and the processing time P of each customer, you are supposed to tell the average waiting time of all the customers.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤) - the total number of customers, and K (≤) - the number of windows. Then N lines follow, each contains 2 times: HH:MM:SS - the arriving time, and P - the processing time in minutes of a customer. Here HH is in the range [00, 23], MM and SS are both in [00, 59]. It is assumed that no two customers arrives at the same time.

    Notice that the bank opens from 08:00 to 17:00. Anyone arrives early will have to wait in line till 08:00, and anyone comes too late (at or after 17:00:01) will not be served nor counted into the average.

    Output Specification:

    For each test case, print in one line the average waiting time of all the customers, in minutes and accurate up to 1 decimal place.

    Sample Input:

    7 3
    07:55:00 16
    17:00:01 2
    07:59:59 15
    08:01:00 60
    08:00:00 30
    08:00:02 2
    08:03:00 10
    

    Sample Output:

    8.2



     1 #include<iostream>
     2 #include<vector>
     3 #include<algorithm>
     4 #include<set>
     5 using namespace std;
     6 struct Node{
     7   int time, prc;
     8   Node(int a, int b){
     9     time = a;
    10     prc = b;
    11   }
    12 };
    13 bool cmp(Node a, Node b){ return a.time<b.time;}
    14 
    15 int main(){
    16   int n, k, i;
    17   scanf("%d%d", &n, &k);
    18   vector<Node> v;
    19   for(i=0; i<n; i++){
    20     int h, m, s, p;
    21     scanf("%d:%d:%d %d", &h, &m, &s, &p);
    22     v.push_back(Node(h*3600+m*60+s, p));
    23   }
    24   sort(v.begin(), v.end(), cmp);
    25   set<int> s;
    26   int sum=0, cnt=0;
    27   for(i=0; i<n; i++){
    28     if(v[i].time<8*3600){ //到达时间早于银行工作时间
    29       cnt++;
    30       if(s.size()<k){//排队等待人数少于窗口数
    31         s.insert(8*3600+v[i].prc*60);
    32             sum += (8*3600 - v[i].time);
    33       }else {//排队等待人数多于窗口数
    34         sum += (*(s.begin()) - v[i].time);
    35         s.insert(*(s.begin())+v[i].prc*60);
    36             s.erase(s.begin());
    37       }
    38     }else if(v[i].time<=17*3600){
    39       cnt++;
    40       if(s.size()<k) s.insert(v[i].time+v[i].prc*60);
    41       else{
    42             if(*(s.begin())>v[i].time){
    43               sum += (*(s.begin()) - v[i].time);
    44               s.insert(*(s.begin()) + v[i].prc*60);
    45               s.erase(s.begin());
    46             }else{
    47                 s.insert(v[i].time + v[i].prc*60);
    48                 s.erase(s.begin());
    49           }
    50       }
    51     }
    52   }
    53   printf("%.1f", sum*1.0/60/cnt);
    54   return 0;
    55 }
  • 相关阅读:
    poj2096(概率dp)
    bzoj4318/洛谷P1654OSU!(期望dp,立方版本)
    hdu1027(逆康托展开)
    hdu3734(数位dp,相减抵消影响)
    hdu2089(数位dp模版)
    hdu2856(倍增lca模版题)
    COI2007 Patrik 音乐会的等待 洛谷P1823
    校门外的树2 contest 树状数组练习 T4
    数星星 contest 树状数组练习 T2
    A simple problem with integer 树状数组区间查询模板题 contest 树状数组练习 T1
  • 原文地址:https://www.cnblogs.com/mr-stn/p/9574208.html
Copyright © 2011-2022 走看看