zoukankan      html  css  js  c++  java
  • 常用损失函数积累

    损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:

      其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的Φ是正则化项(regularizer)或者叫惩罚项(penalty term),它可以是L1,也可以是L2,或者其他的正则函数。整个式子表示的意思是找到使目标函数最小时的θ。下面主要列出几种常见的损失函数。

      理解:损失函数旨在表示出logit和label的差异程度,不同的损失函数有不同的表示意义,也就是在最小化损失函数过程中,logit逼近label的方式不同,得到的结果可能也不同。

    一般情况下,softmax和sigmoid使用交叉熵损失(logloss),hingeloss是SVM推导出的,hingeloss的输入使用原始logit即可。

    一、LogLoss对数损失函数(逻辑回归,交叉熵损失)

      有些人可能觉得逻辑回归的损失函数就是平方损失,其实并不是。平方损失函数可以通过线性回归在假设样本是高斯分布的条件下推导得到,而逻辑回归得到的并不是平方损失。在逻辑回归的推导中,它假设样本服从伯努利分布(0-1分布),然后求得满足该分布的似然函数,接着取对数求极值等等。而逻辑回归并没有求似然函数的极值,而是把极大化当做是一种思想,进而推导出它的经验风险函数为:最小化负的似然函数(即max F(y, f(x)) —> min -F(y, f(x)))。从损失函数的视角来看,它就成了log损失函数了。

    log损失函数的标准形式

      刚刚说到,取对数是为了方便计算极大似然估计,因为在MLE(最大似然估计)中,直接求导比较困难,所以通常都是先取对数再求导找极值点。损失函数L(Y, P(Y|X))表达的是样本X在分类Y的情况下,使概率P(Y|X)达到最大值(换言之,就是利用已知的样本分布,找到最有可能(即最大概率)导致这种分布的参数值;或者说什么样的参数才能使我们观测到目前这组数据的概率最大)。因为log函数是单调递增的,所以logP(Y|X)也会达到最大值,因此在前面加上负号之后,最大化P(Y|X)就等价于最小化L了。

      逻辑回归的P(Y=y|x)表达式如下(为了将类别标签y统一为1和0,下面将表达式分开表示):

      将它带入到上式,通过推导可以得到logistic的损失函数表达式,如下:

      逻辑回归最后得到的目标式子如下:

      上面是针对二分类而言的。这里需要解释一下:之所以有人认为逻辑回归是平方损失,是因为在使用梯度下降来求最优解的时候,它的迭代式子与平方损失求导后的式子非常相似,从而给人一种直观上的错觉

    这里有个PDF可以参考一下:Lecture 6: logistic regression.pdf.

      注意:softmax使用的即为交叉熵损失函数,binary_cossentropy为二分类交叉熵损失,categorical_crossentropy为多分类交叉熵损失,当使用多分类交叉熵损失函数时,标签应该为多分类模式,即使用one-hot编码的向量。

    拓展:Focal Loss

    Focal loss主要是为了解决one-stage目标检测中正负样本比例严重失衡的问题。该损失函数降低了大量简单负样本在训练中所占的权重,也可理解为一种困难样本挖掘。

    Focal loss是在交叉熵损失函数基础上进行的修改,首先回顾二分类交叉上损失:

    是经过激活函数的输出,所以在0-1之间。可见普通的交叉熵对于正样本而言,输出概率越大损失越小。对于负样本而言,输出概率越小则损失越小。此时的损失函数在大量简单样本的迭代过程中比较缓慢且可能无法优化至最优。那么Focal loss是怎么改进的呢?

    首先在原有的基础上加了一个因子,其中gamma>0使得减少易分类样本的损失。使得更关注于困难的、错分的样本。

    例如gamma为2,对于正类样本而言,预测结果为0.95肯定是简单样本,所以(1-0.95)的gamma次方就会很小,这时损失函数值就变得更小。而预测概率为0.3的样本其损失相对很大。对于负类样本而言同样,预测0.1的结果应当远比预测0.7的样本损失值要小得多。对于预测概率为0.5时,损失只减少了0.25倍,所以更加关注于这种难以区分的样本。这样减少了简单样本的影响,大量预测概率很小的样本叠加起来后的效应才可能比较有效。

    此外,加入平衡因子alpha,用来平衡正负样本本身的比例不均:

     

    只添加alpha虽然可以平衡正负样本的重要性,但是无法解决简单与困难样本的问题。

    lambda调节简单样本权重降低的速率,当lambda为0时即为交叉熵损失函数,当lambda增加时,调整因子的影响也在增加。实验发现lambda为2是最优。

    Focal Loss 总结

    作者认为one-stage和two-stage的表现差异主要原因是大量前景背景类别不平衡导致。作者设计了一个简单密集型网络RetinaNet来训练在保证速度的同时达到了精度最优。在双阶段算法中,在候选框阶段,通过得分和nms筛选过滤掉了大量的负样本,然后在分类回归阶段又固定了正负样本比例,或者通过OHEM在线困难挖掘使得前景和背景相对平衡。而one-stage阶段需要产生约100k的候选位置,虽然有类似的采样,但是训练仍然被大量负样本所主导。

    二、平方损失函数(最小二乘法, Ordinary Least Squares )

      最小二乘法是线性回归的一种,最小二乘法(OLS)将问题转化成了一个凸优化问题。在线性回归中,它假设样本和噪声都服从高斯分布(为什么假设成高斯分布呢?其实这里隐藏了一个小知识点,就是中心极限定理,可以参考【central limit theorem】),最后通过极大似然估计(MLE)可以推导出最小二乘式子。最小二乘的基本原则是:最优拟合直线应该是使各点到回归直线的距离和最小的直线,即平方和最小。换言之,OLS是基于距离的,而这个距离就是我们用的最多的欧几里得距离。为什么它会选择使用欧式距离作为误差度量呢(即Mean squared error, MSE),主要有以下几个原因:

    • 简单,计算方便;
    • 欧氏距离是一种很好的相似性度量标准;
    • 在不同的表示域变换后特征性质不变。

    平方损失(Square loss)的标准形式如下:

    当样本个数为n时,此时的损失函数变为:

    Y-f(X)表示的是残差,整个式子表示的是残差的平方和,而我们的目的就是最小化这个目标函数值(注:该式子未加入正则项),也就是最小化残差的平方和(residual sum of squares,RSS)

    而在实际应用中,通常会使用均方差(MSE)作为一项衡量指标,公式如下:

    上面提到了线性回归,这里额外补充一句,我们通常说的线性有两种情况,一种是因变量y是自变量x的线性函数,一种是因变量y是参数α的线性函数。在机器学习中,通常指的都是后一种情况。

    三、指数损失函数(Adaboost)

    学过Adaboost算法的人都知道,它是前向分步加法算法的特例,是一个加和模型,损失函数就是指数函数。在Adaboost中,经过m此迭代之后,可以得到fm(x):

    Adaboost每次迭代时的目的是为了找到最小化下列式子时的参数α 和G:

    而指数损失函数(exp-loss)的标准形式如下

    可以看出,Adaboost的目标式子就是指数损失,在给定n个样本的情况下,Adaboost的损失函数为:

    关于Adaboost的推导,可以参考Wikipedia:AdaBoost或者《统计学习方法》P145.

    四、Hinge损失函数(SVM)

    在机器学习算法中,hinge损失函数和SVM是息息相关的。在线性支持向量机中,最优化问题可以等价于下列式子:

    下面来对式子做个变形,令:

    于是,原式就变成了:

    如若取λ=1/(2C),式子就可以表示成:

    可以看出,该式子与下式非常相似:

    前半部分中的 就是hinge损失函数,而后面相当于L2正则项。

    Hinge 损失函数的标准形式

    可以看出,当|y|>=1时,L(y)=0。

    更多内容,参考Hinge-loss

    补充一下:在libsvm中一共有4中核函数可以选择,对应的是-t参数分别是:

    • 0-线性核;
    • 1-多项式核;
    • 2-RBF核;
    • 3-sigmoid核。

    五、其它损失函数

    除了以上这几种损失函数,常用的还有:

    0-1损失函数

    绝对值损失函数

    下面来看看几种损失函数的可视化图像,对着图看看横坐标,看看纵坐标,再看看每条线都表示什么损失函数,多看几次好好消化消化。

    六、Keras / TensorFlow 中常用 Cost Function 总结

    • mean_squared_error或mse

    • mean_absolute_error或mae

    • mean_absolute_percentage_error或mape

    • mean_squared_logarithmic_error或msle

    • squared_hinge

    • hinge

    • categorical_hinge

    • binary_crossentropy(亦称作对数损失,logloss)

    • logcosh

    • categorical_crossentropy:亦称作多类的对数损失,注意使用该目标函数时,需要将标签转化为形如(nb_samples, nb_classes)的二值序列

    • sparse_categorical_crossentrop:如上,但接受稀疏标签。注意,使用该函数时仍然需要你的标签与输出值的维度相同,你可能需要在标签数据上增加一个维度:np.expand_dims(y,-1)

    • kullback_leibler_divergence:从预测值概率分布Q到真值概率分布P的信息增益,用以度量两个分布的差异.

    • poisson:即(predictions - targets * log(predictions))的均值

    • cosine_proximity:即预测值与真实标签的余弦距离平均值的相反数

      需要记住的是:参数越多,模型越复杂,而越复杂的模型越容易过拟合。过拟合就是说模型在训练数据上的效果远远好于在测试集上的性能。此时可以考虑正则化,通过设置正则项前面的hyper parameter,来权衡损失函数和正则项,减小参数规模,达到模型简化的目的,从而使模型具有更好的泛化能力

  • 相关阅读:
    SQL Reporting Services Report Viewer Scroll Bar(RDLC)
    SQL Server日期格式转换大全
    Export GridView to Excel within an UpdatePanel
    ASP.NET CompareValidator validate Currency
    微軟 Office 2003 版本比較一覽表
    打开Safari的Javascript调试功能
    SQL SERVER 2000/2005 列转行 行转列
    [Java] 使用cookie保持Session (Axis2 和 WSIT)
    .NET通用权限系统快速开发框架
    Java进阶对象与内存控制(一)
  • 原文地址:https://www.cnblogs.com/noahzhixiao/p/10170264.html
Copyright © 2011-2022 走看看