zoukankan      html  css  js  c++  java
  • BZOJ 3669 魔法森林

    LCT维护生成树

    先按照a的权值把边排序,离线维护b的最小生成树。

    将a排序后,依次动态加边,我们只需要关注b的值。要保证1-n花费最少,两点间的b值肯定是越小越好,所以我们可以考虑以b为关键字维护最小生成树。

    对于新加的边b,如果1-n已经联通,需要更新答案

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 400005;
    int n, m, tot, ans, mx[N], fa[N], w[N], ch[N][2], rev[N], id[N], st[N];
    struct Edge {
        int v, u, a, b;
        bool operator < (const Edge &rhs) const {
            return a < rhs.a;
        }
    } e[N];
    
    int newNode(int v){
        ++tot;
        w[tot] = mx[tot] = v, id[tot] = tot;
        fa[tot] = ch[tot][0] = ch[tot][1] = 0;
        return tot;
    }
    
    bool isRoot(int x){
        return ch[fa[x]][0] != x && ch[fa[x]][1] != x;
    }
    
    void reverse(int x){
        rev[x] ^= 1, swap(ch[x][0], ch[x][1]);
    }
    
    void push_up(int x){
        int l = ch[x][0], r = ch[x][1];
        mx[x] = w[x], id[x] = x;
        if(mx[l] > mx[x]) mx[x] = mx[l], id[x] = id[l];
        if(mx[r] > mx[x]) mx[x] = mx[r], id[x] = id[r];
    }
    
    void push_down(int x){
        if(rev[x]){
            rev[x] ^= 1;
            if(ch[x][0]) reverse(ch[x][0]);
            if(ch[x][1]) reverse(ch[x][1]);
        }
    }
    
    void rotate(int x){
        int y = fa[x], z = fa[y], p = (ch[y][1] == x) ^ 1;
        ch[y][p^1] = ch[x][p], fa[ch[x][p]] = y;
        if(!isRoot(y)) ch[z][ch[z][1] == y] = x;
        fa[x] = z, fa[y] = x, ch[x][p] = y;
        push_up(y), push_up(x);
    }
    
    void splay(int x){
        int pos = 0; st[++pos] = x;
        for(int i = x; !isRoot(i); i = fa[i]) st[++pos] = fa[i];
        while(pos) push_down(st[pos--]);
        while(!isRoot(x)){
            int y = fa[x], z = fa[y];
            if(!isRoot(y)) (ch[y][0] == x) ^ (ch[z][0] == y) ? rotate(x) : rotate(y);
            rotate(x);
        }
        push_up(x);
    }
    
    void access(int x){
        for(int p = 0; x; p = x, x = fa[x])
            splay(x), ch[x][1] = p, push_up(x);
    }
    
    void makeRoot(int x){
        access(x), splay(x), reverse(x);
    }
    
    void link(int x, int y){
        makeRoot(x);
        fa[x] = y;
    }
    
    int findRoot(int x){
        access(x), splay(x);
        while(ch[x][0]) push_down(x), x = ch[x][0];
        splay(x);
        return x;
    }
    
    void split(int x, int y){
        makeRoot(x), access(y), splay(y);
    }
    
    bool isConnect(int x, int y){
        makeRoot(x);
        return findRoot(y) == x;
    }
    
    int main(){
    
        ans = INF;
        n = read(), m = read();
        for(int i = 1; i <= n; i ++) newNode(0);
        for(int i = 0; i < m; i ++){
            e[i].u = read(), e[i].v = read(), e[i].a = read(), e[i].b = read();
        }
        sort(e, e + m);
        for(int i = 0; i < m; i ++){
            int u = e[i].u, v = e[i].v, t = newNode(e[i].b);
            if(!isConnect(u, v)) link(u, t), link(t, v);
            else{
                split(u, v);
                if(e[i].b > mx[v]) continue;
                int tmp = id[v]; splay(tmp);
                fa[ch[tmp][0]] = fa[ch[tmp][1]] = 0;
                ch[tmp][0] = ch[tmp][1] = 0;
                link(u, t), link(t, v);
            }
            if(isConnect(1, n)){
                split(1, n);
                ans = min(ans, mx[n] + e[i].a);
            }
        }
        printf(ans == INF ? "-1
    " : "%d
    ", ans);
        return 0;
    }
    
  • 相关阅读:
    【微信开发之问题集锦】redirect_uri 参数错误
    调度算法之时间片轮转算法
    快速排序算法分析和实现
    单链表(c语言实现)贼详细
    调度算法之最短作业优先算法
    HDU1027
    HDU1753 (大正小数相加)
    HDU 1715 (大数相加,斐波拉契数列)
    HDU 1316 (斐波那契数列,大数相加,大数比较大小)
    HDU1047(多个大数相加)
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10738436.html
Copyright © 2011-2022 走看看