zoukankan      html  css  js  c++  java
  • [Math]Pi(1)

    数学知识忘地太快,在博客记录一下pi的生成。

    • 100 Decimal places
      • 3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679
    • Approximations
      • 22/7 3 decimal places (used by Egyptians around 1000BC)
      • 666/212 4 decimal places
      • 355/113 6 decimal places
      • 104348/33215 8 decimal places
    • Series Expansions
      • English mathematician John Wallis in 1655.

           4 * 4 * 6 * 6 * 8 * 8 * 10 * 10 * 12 * 12 .....

      pi = 8 * -------------------------------------------------

           3 * 3 * 5 * 5 * 7 * 7 * 9 * 9 * 11 * 11 ....

      • Scottish mathematician and astronomer James Gregory in 1671

      pi = 4 * (1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ....)

      • Swiss mathematician Leonard Euler.

      pi = sqrt(12 - (12/22) + (12/32) - (12/42) + (12/52) .... )        …… (1)

      pi = sqrt[6 * ( 1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 + ...)]     …… (2)

    下面则试证一下 Gregory’s Series

    1. Taylor series

    egin{equation}label{E1}
    fleft( x ight) = sumlimits_{n = 0}^infty {frac{{ { f^{left( n ight)}}left( a ight)}}{{n!}}} {left( {x - a} ight)^n}
    end{equation}

    2. Maclaurin series

    egin{equation}label{E2}
    fleft( x ight) = sumlimits_{n = 0}^infty {frac{ f^{left( n ight)}left( 0 ight) }{n!} } { x^n }
    end{equation}

    3. arctan(x)一阶导数

    egin{align*}
    &y = f left( x ight) = arctan left( x ight) \
    &x = tan left( y ight)
    end{align*}
    egin{align*}
    Longrightarrow dx &= sec^{2}y * dy \
    f^{ prime }{ left( x ight) }&= { frac {dx}{dy} } = {frac{1}{ x^{2}+1 } }
    end{align*}

    4. 推导过程

    (1).y=arctan(x)的n阶导可以用下面的方法求得:

    egin{align*}
    ecause &arctan left( x ight) = int olimits_0^x frac{1}{ 1+t^{2} } \,dt \
    &frac{1}{1+x^{2} } = frac{1}{2}( frac{1}{1-ix} + frac{1}{1+ix} ) \
    herefore &arctan left( x ight) = frac{1}{2}i left[ ln (1-ix) -ln (1+ix) ight]
    end{align*}

    (2).若按原始方法,得先记住分数函数的求导方式:

    $$ left( frac { f left( x ight) } { g left( x ight)} ight)^{prime} = frac { { f^{ prime } left( x ight) } { g left( x ight) } - { f left( x ight) } { g^{ prime } left( x ight) } } { g^{2} left( x ight) } $$

    (3).f(x)的n阶导数

    egin{align*}
    & f ^{left( 1 ight)}left( x ight) = {frac{1}{ x^{2}+1 } } \
    & f ^{left( 2 ight)}left( x ight) = {frac{-2x}{ left(x^{2}+1 ight)^{2} } } \
    & f ^{left( 3 ight)}left( x ight) = {frac{2left( 3x^{2}-1 ight) }{ left(x^{2}+1 ight)^{3} } } \
    & f ^{left( 4 ight)}left( x ight) = {frac{-24xleft(x^{2}-1 ight) }{ left(x^{2}+1 ight)^{4} } } \
    & f ^{left( 5 ight)}left( x ight) = {frac{24left(5x^{4}-10x^{2}+1 ight) }{ left(x^{2}+1 ight)^{5} } } \
    & ...\
    & f ^{left( n ight)}left( x ight) = frac {1}{2} (-1)^{n} i left[ (-i+x)^{-n}-(i+x)^{-n} ight] (n-1)! \
    & ...\ 
    end{align*}

    (4).f(x) Taylor Series Expansion 的系数

    egin{align*}
    k_{1} &= frac{ f ^{left( 1 ight)}left( 0 ight) } { 1! } = 1\
    k_{2} &= frac{ f ^{left( 2 ight)}left( 0 ight) } { 2! } = 0\
    k_{3} &= frac{ f ^{left( 3 ight)}left( 0 ight) } { 3! } = frac {-1}{3}\
    k_{4} &= frac{ f ^{left( 4 ight)}left( 0 ight) } { 4! } = 0\
    k_{5} &= frac{ f ^{left( 5 ight)}left( 0 ight) } { 5! } = frac {1}{5}\
    & ...\
    end{align*}

    5. get the conclusion, Maclaurin Series.

    『Gregory's series』 or 『Leibniz's series』

    egin{align*}
    ecause arctan left( x ight) &= sum limits_{n=0}^{infty} (-1)^{n} { frac{1}{2n+1} } x^{2n+1} \
    &= x - frac{1}{3}x^{3} + frac{1}{5}x^{5} - frac{1}{7}x^{7} + ...\
    herefore arctan left( 1 ight) &= 1-frac{1}{3} + frac{1}{5} - frac{1}{7} + frac{1}{9} -frac{1}{11}+... =frac{ pi }{4}
    end{align*}

  • 相关阅读:
    element多选下拉框的坑
    滚动条样式全局修改
    element表格自带排序的坑
    c++学习
    HTTP与TCP的区别和联系
    JSP整理
    学习目标
    mysql操作
    JAVA Date、String、Calendar类型之间的转化
    后台数据类型接收问题总结
  • 原文地址:https://www.cnblogs.com/ouxiaogu/p/3398284.html
Copyright © 2011-2022 走看看