zoukankan      html  css  js  c++  java
  • Go: The Idea Behind Sync.Pool

    原文:https://medium.com/swlh/go-the-idea-behind-sync-pool-32da5089df72

    -----------------------

    I encountered a problem in Go Garbage Collection inside a project of mine recently. A massive amount of object were allocated repeatedly and caused a huge workload of GC. Using sync.Pool I was able to decrease the allocations and GC workload.

    What is sync.Pool?

    Why to use sync.Pool?

    How to use sync.Pool?

    Due to New function type, which is func() interface{}Get method returns an interface{}. So you need to do a type assertion in order to get the concrete object

    // A dummy struct
    type Person struct {
    	Name string
    }
    
    // Initializing pool
    var personPool = sync.Pool{
    	// New optionally specifies a function to generate
    	// a value when Get would otherwise return nil.
    	New: func() interface{} { return new(Person) },
    }
    
    // Main function
    func main() {
    	// Get hold of an instance
    	newPerson := personPool.Get().(*Person)
    	// Defer release function
    	// After that the same instance is 
    	// reusable by another routine
    	defer personPool.Put(newPerson)
    
    	// Using the instance
    	newPerson.Name = "Jack"
    }
    

      

    sync.Pool example

    Benchmark

    type Person struct {
    	Age int
    }
    
    var personPool = sync.Pool{
    	New: func() interface{} { return new(Person) },
    }
    
    func BenchmarkWithoutPool(b *testing.B) {
    	var p *Person
    	b.ReportAllocs()
    	b.ResetTimer()
    	for i := 0; i < b.N; i++ {
    		for j := 0; j < 10000; j++ {
    			p = new(Person)
    			p.Age = 23
    		}
    	}
    }
    
    func BenchmarkWithPool(b *testing.B) {
    	var p *Person
    	b.ReportAllocs()
    	b.ResetTimer()
    	for i := 0; i < b.N; i++ {
    		for j := 0; j < 10000; j++ {
    			p = personPool.Get().(*Person)
    			p.Age = 23
    			personPool.Put(p)
    		}
    	}
    }
    

      

    sync.Pool benchmark

    Benchmark result:

    BenchmarkWithoutPool
    BenchmarkWithoutPool-8 160698 ns/op 80001 B/op 10000 allocs/op
    BenchmarkWithPool
    BenchmarkWithPool-8 191163 ns/op 0 B/op 0 allocs/op

    Trade-off

    func BenchmarkPool(b *testing.B) {
    	var p sync.Pool
    	b.RunParallel(func(pb *testing.PB) {
    		for pb.Next() {
    			p.Put(1)
    			p.Get()
    		}
    	})
    }
    
    func BenchmarkAllocation(b *testing.B) {
    	b.RunParallel(func(pb *testing.PB) {
    		for pb.Next() {
    			i := 0
    			i = i
    		}
    	})
    }
    

      

    Benchmarking sync.Pool and simple Allocation

    Benchmark result:

    BenchmarkPool
    BenchmarkPool-8 283395016 4.40 ns/op
    BenchmarkAllocation
    BenchmarkAllocation-8 1000000000 0.344 ns/op
     

    How does sync.Pool work?

    According to the sync/pool.go , package init function registers to the runtime as a method to clean the pools. This method will be triggered by the GC.

    func init() {
    runtime_registerPoolCleanup(poolCleanup)
    }

    When the GC is triggered, objects inside the victim cache will be collected and then objects inside the local pool will be moved to the victim cache.

    func poolCleanup() {
    // Drop victim caches from all pools.
    for _, p := range oldPools {
    p.victim = nil
    p.victimSize = 0
    }

    // Move primary cache to victim cache.
    for _, p := range allPools {
    p.victim = p.local
    p.victimSize = p.localSize
    p.local = nil
    p.localSize = 0
    }

    oldPools, allPools = allPools, nil
    }

    New objects are put in the local pool. Calling Put method will put the object into the local pool as well. Calling Get method will take an object from the victim cache in the first place and if the victim cache was empty the object will be taken from the local pool.

     

     

    sync.Pool localPool and victimCache

    For your information, the Go 1.12 sync.Pool implementation uses a mutex based locking for thread-safe operations from multiple Goroutines. Go 1.13 introduces a doubly-linked list as a shared pool which removes the mutex lock and improves the shared access.

    Conclusion

    For your information, the Go 1.12 sync.Pool implementation uses a mutex based locking for thread-safe operations from multiple Goroutines. Go 1.13 introduces a doubly-linked list as a shared pool which removes the mutex lock and improves the shared access.

    Conclusion

  • 相关阅读:
    Android APN开关原理
    HTC Wildfire 闪光灯手电筒的实现方式
    Android Stagefright MPEG4Extractor分析
    Ubuntu 10.10 64bit下使用Android NDK r6编译FFmpeg 0.8.1
    开始IMS学习相关名词和术语(持续更新)
    Ubuntu 下安装代码格式化程序 astyle
    Ubuntu 10.10 x64 安装 ffmpeg tutorial 相关支持库
    关于GradientDrawable的angle属性
    判断SIM卡所属的运营商
    最小生成树算法
  • 原文地址:https://www.cnblogs.com/oxspirt/p/15358377.html
Copyright © 2011-2022 走看看