zoukankan      html  css  js  c++  java
  • Go: The Idea Behind Sync.Pool

    原文:https://medium.com/swlh/go-the-idea-behind-sync-pool-32da5089df72

    -----------------------

    I encountered a problem in Go Garbage Collection inside a project of mine recently. A massive amount of object were allocated repeatedly and caused a huge workload of GC. Using sync.Pool I was able to decrease the allocations and GC workload.

    What is sync.Pool?

    Why to use sync.Pool?

    How to use sync.Pool?

    Due to New function type, which is func() interface{}Get method returns an interface{}. So you need to do a type assertion in order to get the concrete object

    // A dummy struct
    type Person struct {
    	Name string
    }
    
    // Initializing pool
    var personPool = sync.Pool{
    	// New optionally specifies a function to generate
    	// a value when Get would otherwise return nil.
    	New: func() interface{} { return new(Person) },
    }
    
    // Main function
    func main() {
    	// Get hold of an instance
    	newPerson := personPool.Get().(*Person)
    	// Defer release function
    	// After that the same instance is 
    	// reusable by another routine
    	defer personPool.Put(newPerson)
    
    	// Using the instance
    	newPerson.Name = "Jack"
    }
    

      

    sync.Pool example

    Benchmark

    type Person struct {
    	Age int
    }
    
    var personPool = sync.Pool{
    	New: func() interface{} { return new(Person) },
    }
    
    func BenchmarkWithoutPool(b *testing.B) {
    	var p *Person
    	b.ReportAllocs()
    	b.ResetTimer()
    	for i := 0; i < b.N; i++ {
    		for j := 0; j < 10000; j++ {
    			p = new(Person)
    			p.Age = 23
    		}
    	}
    }
    
    func BenchmarkWithPool(b *testing.B) {
    	var p *Person
    	b.ReportAllocs()
    	b.ResetTimer()
    	for i := 0; i < b.N; i++ {
    		for j := 0; j < 10000; j++ {
    			p = personPool.Get().(*Person)
    			p.Age = 23
    			personPool.Put(p)
    		}
    	}
    }
    

      

    sync.Pool benchmark

    Benchmark result:

    BenchmarkWithoutPool
    BenchmarkWithoutPool-8 160698 ns/op 80001 B/op 10000 allocs/op
    BenchmarkWithPool
    BenchmarkWithPool-8 191163 ns/op 0 B/op 0 allocs/op

    Trade-off

    func BenchmarkPool(b *testing.B) {
    	var p sync.Pool
    	b.RunParallel(func(pb *testing.PB) {
    		for pb.Next() {
    			p.Put(1)
    			p.Get()
    		}
    	})
    }
    
    func BenchmarkAllocation(b *testing.B) {
    	b.RunParallel(func(pb *testing.PB) {
    		for pb.Next() {
    			i := 0
    			i = i
    		}
    	})
    }
    

      

    Benchmarking sync.Pool and simple Allocation

    Benchmark result:

    BenchmarkPool
    BenchmarkPool-8 283395016 4.40 ns/op
    BenchmarkAllocation
    BenchmarkAllocation-8 1000000000 0.344 ns/op
     

    How does sync.Pool work?

    According to the sync/pool.go , package init function registers to the runtime as a method to clean the pools. This method will be triggered by the GC.

    func init() {
    runtime_registerPoolCleanup(poolCleanup)
    }

    When the GC is triggered, objects inside the victim cache will be collected and then objects inside the local pool will be moved to the victim cache.

    func poolCleanup() {
    // Drop victim caches from all pools.
    for _, p := range oldPools {
    p.victim = nil
    p.victimSize = 0
    }

    // Move primary cache to victim cache.
    for _, p := range allPools {
    p.victim = p.local
    p.victimSize = p.localSize
    p.local = nil
    p.localSize = 0
    }

    oldPools, allPools = allPools, nil
    }

    New objects are put in the local pool. Calling Put method will put the object into the local pool as well. Calling Get method will take an object from the victim cache in the first place and if the victim cache was empty the object will be taken from the local pool.

     

     

    sync.Pool localPool and victimCache

    For your information, the Go 1.12 sync.Pool implementation uses a mutex based locking for thread-safe operations from multiple Goroutines. Go 1.13 introduces a doubly-linked list as a shared pool which removes the mutex lock and improves the shared access.

    Conclusion

    For your information, the Go 1.12 sync.Pool implementation uses a mutex based locking for thread-safe operations from multiple Goroutines. Go 1.13 introduces a doubly-linked list as a shared pool which removes the mutex lock and improves the shared access.

    Conclusion

  • 相关阅读:
    麻省理工18年春软件构造课程阅读13“调试”
    麻省理工18年春软件构造课程阅读15“相等”
    麻省理工18年春软件构造课程阅读12“接口与枚举”
    麻省理工18年春软件构造课程阅读11“抽象函数与表示不变量”
    麻省理工18年春软件构造课程阅读10“抽象数据类型”
    麻省理工18年春软件构造课程阅读09“避免调试”
    麻省理工18年春软件构造课程阅读08“可变性与不变性”
    麻省理工18年春软件构造课程阅读07“设计规格说明”
    麻省理工18年春软件构造课程阅读06“规格说明”
    麻省理工18年春软件构造课程阅读05“版本控制”
  • 原文地址:https://www.cnblogs.com/oxspirt/p/15358377.html
Copyright © 2011-2022 走看看