zoukankan      html  css  js  c++  java
  • 检查素数的正则表达式 新风宇宙

    一般来说,我们会使用正规表达式来做字符串匹配,今天在网上浏览的时候,看到了有人用正则表达式来检查一个数字是否为素数(质数),让我非常感兴趣,这个正则表达式如入所示:

    检查素数的正则表达式/^1?$|^(11+?) +$/

    要使用这个正规则表达式,你需要把自然数转成多个1的字符串,如:2 要写成 “11”, 3 要写成 “111”, 17 要写成“11111111111111111”,这种工作使用一些脚本语言可以轻松的完成。

    一开始我对这个表达式持怀疑态度,但仔细研究了一下这个表达式,发现是非常合理的,下面,让我带你来细细剖析一下是这个表达式的工作原理。

    首先,我们看到这个表达式中有“|”,也就是说这个表达式可以分成两个部分:/^1?$/ 和 /^(11+?)\1+$/

    • 第一部分:/^1?$/, 这个部分相信不用我多说了,其表示匹配“非空串”以及字串中不只一个“1”的字符串。
    • 第二部分:/^(11+?)\1+$/,这个部分是整个表达式的关键部分。把否定条件“^”去掉,其可以分成两个部分,(11+?)\1+$,前半部很简单了,匹配以“11”开头的并重复0或n个1的字符串,后面的部分意思是把前半部分作为一个字串去匹配还剩下的字符串1次或多次(这句话的意思是——剩余的字串的1的个数要是前面字串1个数的整数倍)。

    通过上面的分析,我们知道,第二部分是最重要的,对于第二部分,举几个例子,

    示例一:判断自然数8。我们可以知道,8转成我们的格式就是“11111111”,对于(11+?),其匹配了“11”,于是还剩下“111111”,而\1+$正好匹配了剩下的“111111”,因为,“11”这个模式在“111111”出现了三次,符合模式匹配,返回true。取反(^),所以,得到false,于是这个数不是质数。

    示例二:判断自然数11。转成我们需要的格式是“11111111111”(十一个1),对于(11+?),其匹配了“11”(前两个1),还剩下“111111111”(九个1),而\1+$无法为“11”匹配那“九个1”,因为“11”这个模式并没有在“九个1”这个串中正好出现N次。于是,我们的正则表达式引擎会尝试下一种方法,先匹配“111”(前三个1),然后把“111”作为模式去匹配剩下的“11111111”(八个1),很明显,那“八个1”并没有匹配“三个1”多次。所以,引擎会继续向下尝试……直至返回false。

    通过示例二,我们可以得到这样的等价数算算法,正则表达式会匹配这若干个1中有没有出现“二个1”的整数倍,“三个1”的整数倍,“四个1”的整数倍……,而,这正好是我们需要的算素数的算法。现在大家明白了吧。

    下面,我们用perl来使用这个正规则表达式不停地输出素数:(关于perl的语法我就不多说了)

    perl -e'$|++;(1 x$_)!~/^1?$|^(11+?)\1+$/&&print"$_ "while ++$_'

    另外,让我们来举一反三,根据上述的这种方法,我们甚至可以用正则表达式来求证某方式是否有解,如:

    • 二元方程:17x + 12y = 51   判断其是否有解的正则表达式是:^(.*)\1{16}(.*)\2{11}$
    • 三元方程:11x + 2y + 5z = 115 判断其是否有解的正则表达式是:^(.*)\1{10}(.*)\2{1}(.*)\3{4}$

    大家不妨自己做做练习,为什么上述的两个正则表达式可以判断方程是否有解。如果无法参透其中的奥妙的话,你可以读读这篇英文文章

  • 相关阅读:
    Largest Rectangle in Histogram
    Valid Sudoku
    Set Matrix Zeroes
    Unique Paths
    Binary Tree Level Order Traversal II
    Binary Tree Level Order Traversal
    Path Sum II
    Path Sum
    Validate Binary Search Tree
    新手程序员 e
  • 原文地址:https://www.cnblogs.com/php5/p/1799595.html
Copyright © 2011-2022 走看看