zoukankan      html  css  js  c++  java
  • Matlab:拟合(1)

    拟合练习:

    1 function f = curvefun(x, tdata)
    2 f = (x(1)*x(2)*x(3)) / (x(3)-x(2)) * ( exp(-x(2)*tdata)/(x(4)-x(2)) + exp(-x(3)*tdata)/(x(4)-x(3)) - (1/(x(4)-x(2))+1/(x(4)-x(3)))*exp(-x(4)*tdata) );
     1 %数据输入
     2 tdata = [0.25 0.5 0.75 1 1.5 2 2.5 3 3.5 4 4.5 5 6 7 8 9 10 11 12 13 14 15 16];
     3 vdata = [30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25 18 15 12 10 7 7 4];
     4 %拟定估计值
     5 x0 = [1 2 3 4];
     6 x = lsqcurvefit('curvefun', x0, tdata, vdata)
     7 f = curvefun(x, tdata)
     8 %作散点图和你和图
     9 plot(tdata, vdata, 'k+')
    10 hold on
    11 plot(tdata, f, 'r')

    结果: x =

      256.2035    0.1512    0.2422    1.9506

    f =

      Columns 1 through 8

       39.7501   62.2565   74.2700   79.9309   81.3616   77.1765   71.3312   65.2712

      Columns 9 through 16

       59.5001   54.1706   49.3072   44.8893   37.2494   30.9669   25.7925   21.5224

      Columns 17 through 23

       17.9914   15.0658   12.6370   10.6167    8.9330    7.5272    6.3515

    方法一:解超定方程组

    1 x = 0:0.1:1;
    2 y = [-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];
    3 R = [(x.^2)', x', ones(11, 1)];
    4 A = Ry'

    结果:
    A =

       -9.8108    20.1293    -0.0317

    即为系数a1, a2, a3

    方法二:用多项式拟合

     1 x = 0:0.1:1;
     2 y = [-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];
     3 %二次多项式拟合
     4 A = polyfit(x, y, 2)
     5 %计算拟合之后的原始数据点的函数值
     6 Y = polyval(A, x);
     7 %作出数据点和拟合曲线的图形
     8 plot(x, y, 'k+')
     9 hold on 
    10 plot(x, Y, 'r')

    结果:
    A =

       -9.8108   20.1293   -0.0317

    拟合曲线

    ——现在的努力是为了小时候吹过的牛B!!
  • 相关阅读:
    VC6.0图形处理7边缘检测
    VC6.0图像处理0bmp文件分析
    java版QQ 欢迎点评
    VC6.0图像处理3灰度变换
    VC6.0图形处理6图像增强
    VC6.0图像处理1浏览图片
    VC6.0图像处理4镜像
    一个软件行业中层主管在年底给团队成员的一封信
    SQL的EXISTS与in、not exists与not in 效率比较和使用
    按某字段合并字符串
  • 原文地址:https://www.cnblogs.com/pingge/p/3259487.html
Copyright © 2011-2022 走看看