zoukankan      html  css  js  c++  java
  • POJ3255(次短路)

    Roadblocks
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 12480   Accepted: 4416

    Description

    Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

    The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

    The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

    Input

    Line 1: Two space-separated integers: N and R 
    Lines 2..R+1: Each line contains three space-separated integers: AB, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

    Output

    Line 1: The length of the second shortest path between node 1 and node N

    Sample Input

    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100

    Sample Output

    450
    次短路两种解法:spfa迭代、spfa+A*

    spfa迭代:
    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    const int MAXN=5005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w,net;
    }es[200005];
    int n,m;
    int head[MAXN],tot;
    void addedge(int u,int v,int w)
    {
        es[tot].to=v;
        es[tot].w=w;
        es[tot].net=head[u];
        head[u]=tot++;
    }
    
    int d[MAXN],vis[MAXN],second[MAXN];
    void spfa(int src)
    {
        for(int i=1;i<=n;i++)
        {
            second[i]=INF;
            d[i]=INF;
            vis[i]=0;
        }
        d[src]=0;
        vis[src]=1;
        queue<int> que;
        que.push(src);
        while(!que.empty())
        {
            int u=que.front();que.pop();    
            vis[u]=0;
            for(int i=head[u];i!=-1;i=es[i].net)
            {
                Edge e=es[i];
                bool tag=false;
                if(d[e.to]>d[u]+e.w)
                {
                    second[e.to]=d[e.to];
                    d[e.to]=d[u]+e.w;
                    tag=true;
                }
                else if(d[e.to]<d[u]+e.w&&d[u]+e.w<second[e.to])
                {
                    second[e.to]=d[u]+e.w;
                    tag=true;
                }
                if(second[e.to]>second[u]+e.w)
                {
                    second[e.to]=second[u]+e.w;
                    tag=true;
                }
                if(tag)
                {
                    if(!vis[e.to])
                    {
                        vis[e.to]=1;
                        que.push(e.to);
                    }
                }
            }
        }
    }
    
    int main()
    {
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            memset(head,-1,sizeof(head));
            tot=0;
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);
                addedge(v,u,w);
            }
            spfa(1);    
            printf("%d
    ",second[n]);
        }
        return 0;
    }

     spfa+A*算法

    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    const int MAXN=5005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w,net;
    }es[200005];
    int n,m;
    int head[MAXN],tot;
    void addedge(int u,int v,int w)
    {
        es[tot].to=v;
        es[tot].w=w;
        es[tot].net=head[u];
        head[u]=tot++;
    }
    
    int d[MAXN],vis[MAXN];
    void spfa(int src)
    {
        for(int i=1;i<=n;i++)
        {
            d[i]=INF;
            vis[i]=0;
        }
        queue<int> que;
        d[src]=0;
        que.push(src);
        while(!que.empty())
        {
            int u=que.front();que.pop();
            vis[u]=0;
            for(int i=head[u];i!=-1;i=es[i].net)
            {
                if(d[es[i].to]>d[u]+es[i].w)
                {
                    d[es[i].to]=d[u]+es[i].w;
                    if(!vis[es[i].to])
                    {
                        vis[es[i].to]=1;
                        que.push(es[i].to);
                    }
                }
            }
        }
    }
    
    struct Node{
        int u,g,f;
        Node(){}
        Node(int u,int g,int f)
        {
            this->u=u;
            this->g=g;
            this->f=f;
        }
        bool operator<(const Node e) const
        {
            return e.f < f;
        }
    };
    void Astar(int src,int ter)
    {
        priority_queue<Node> que;
        que.push(Node(src,0,d[src]));
        
        int k=0;
        while(!que.empty())
        {
            Node now=que.top();que.pop();
            if(now.u==ter)
            {
                k++;
                if(k==2)
                {
                    printf("%d
    ",now.f);
                    return ;
                }
            }
            
            for(int i=head[now.u];i!=-1;i=es[i].net)
            {
                que.push(Node(es[i].to,now.g+es[i].w,now.g+es[i].w+d[es[i].to]));    
            }
        }
    }
    
    int main()
    {
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            memset(head,-1,sizeof(head));
            tot=0;
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);
                addedge(v,u,w);
            }
            spfa(n);    
            Astar(1,n);
        }
        return 0;
    }
  • 相关阅读:
    CSS常用记录
    CSS字体图标使用方式
    CSS之多个div一行排列
    Mysql MVCC原理和幻读解决
    第8章 管理还原数据
    第20章 数据的移动
    oracle恢复删除的数据
    第11章 索引的管理与维护
    第10章 管理表
    第19章 归档模式下的数据库恢复
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5816734.html
Copyright © 2011-2022 走看看