zoukankan      html  css  js  c++  java
  • POJ3255(次短路)

    Roadblocks
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 12480   Accepted: 4416

    Description

    Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

    The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

    The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

    Input

    Line 1: Two space-separated integers: N and R 
    Lines 2..R+1: Each line contains three space-separated integers: AB, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

    Output

    Line 1: The length of the second shortest path between node 1 and node N

    Sample Input

    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100

    Sample Output

    450
    次短路两种解法:spfa迭代、spfa+A*

    spfa迭代:
    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    const int MAXN=5005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w,net;
    }es[200005];
    int n,m;
    int head[MAXN],tot;
    void addedge(int u,int v,int w)
    {
        es[tot].to=v;
        es[tot].w=w;
        es[tot].net=head[u];
        head[u]=tot++;
    }
    
    int d[MAXN],vis[MAXN],second[MAXN];
    void spfa(int src)
    {
        for(int i=1;i<=n;i++)
        {
            second[i]=INF;
            d[i]=INF;
            vis[i]=0;
        }
        d[src]=0;
        vis[src]=1;
        queue<int> que;
        que.push(src);
        while(!que.empty())
        {
            int u=que.front();que.pop();    
            vis[u]=0;
            for(int i=head[u];i!=-1;i=es[i].net)
            {
                Edge e=es[i];
                bool tag=false;
                if(d[e.to]>d[u]+e.w)
                {
                    second[e.to]=d[e.to];
                    d[e.to]=d[u]+e.w;
                    tag=true;
                }
                else if(d[e.to]<d[u]+e.w&&d[u]+e.w<second[e.to])
                {
                    second[e.to]=d[u]+e.w;
                    tag=true;
                }
                if(second[e.to]>second[u]+e.w)
                {
                    second[e.to]=second[u]+e.w;
                    tag=true;
                }
                if(tag)
                {
                    if(!vis[e.to])
                    {
                        vis[e.to]=1;
                        que.push(e.to);
                    }
                }
            }
        }
    }
    
    int main()
    {
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            memset(head,-1,sizeof(head));
            tot=0;
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);
                addedge(v,u,w);
            }
            spfa(1);    
            printf("%d
    ",second[n]);
        }
        return 0;
    }

     spfa+A*算法

    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    const int MAXN=5005;
    const int INF=0x3f3f3f3f;
    struct Edge{
        int to,w,net;
    }es[200005];
    int n,m;
    int head[MAXN],tot;
    void addedge(int u,int v,int w)
    {
        es[tot].to=v;
        es[tot].w=w;
        es[tot].net=head[u];
        head[u]=tot++;
    }
    
    int d[MAXN],vis[MAXN];
    void spfa(int src)
    {
        for(int i=1;i<=n;i++)
        {
            d[i]=INF;
            vis[i]=0;
        }
        queue<int> que;
        d[src]=0;
        que.push(src);
        while(!que.empty())
        {
            int u=que.front();que.pop();
            vis[u]=0;
            for(int i=head[u];i!=-1;i=es[i].net)
            {
                if(d[es[i].to]>d[u]+es[i].w)
                {
                    d[es[i].to]=d[u]+es[i].w;
                    if(!vis[es[i].to])
                    {
                        vis[es[i].to]=1;
                        que.push(es[i].to);
                    }
                }
            }
        }
    }
    
    struct Node{
        int u,g,f;
        Node(){}
        Node(int u,int g,int f)
        {
            this->u=u;
            this->g=g;
            this->f=f;
        }
        bool operator<(const Node e) const
        {
            return e.f < f;
        }
    };
    void Astar(int src,int ter)
    {
        priority_queue<Node> que;
        que.push(Node(src,0,d[src]));
        
        int k=0;
        while(!que.empty())
        {
            Node now=que.top();que.pop();
            if(now.u==ter)
            {
                k++;
                if(k==2)
                {
                    printf("%d
    ",now.f);
                    return ;
                }
            }
            
            for(int i=head[now.u];i!=-1;i=es[i].net)
            {
                que.push(Node(es[i].to,now.g+es[i].w,now.g+es[i].w+d[es[i].to]));    
            }
        }
    }
    
    int main()
    {
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            memset(head,-1,sizeof(head));
            tot=0;
            for(int i=0;i<m;i++)
            {
                int u,v,w;
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);
                addedge(v,u,w);
            }
            spfa(n);    
            Astar(1,n);
        }
        return 0;
    }
  • 相关阅读:
    详解JVM中的内存模型是什么?
    【亲测】手把手教你如何破解pycharm(附安装包和破解文件)
    Spring实战第4版PDF下载含源码
    Tomcat的基本使用及相关知识的概述(超详细版)
    JVM中垃圾回收机制如何判断是否死亡?详解引用计数法和可达性分析 !
    详解JVM中的五大内存区域
    [Django][python][工具]阿里云平台短信验证功能
    [数据分析][评价方法]打分式评价-信息熵理论与熵权法
    [工具]用OmniGraffle 五步绘制流程图
    [操作系统]设备分配中的数据结构:设备控制表(DCT)、控制器控制表(COCT)、通道控制表(CHCT)和系统设备表(SDT)
  • 原文地址:https://www.cnblogs.com/program-ccc/p/5816734.html
Copyright © 2011-2022 走看看