RCNN
RCNN存在着重复计算的问题(proposal的region有几千个,多数都是互相重叠,重叠部分会被多次重复提取feature),于是RBG借鉴Kaiming He的SPP-net的思路单枪匹马搞出了Fast-RCNN,跟RCNN最大区别就是Fast-RCNN将proposal的region映射到CNN的最后一层conv layer的feature map上,这样一张图片只需要提取一次feature,大大提高了速度,也由于流程的整合以及其他原因,在VOC2007上的mAP也提高到了68%。
探索是无止境的。Fast-RCNN的速度瓶颈在Region proposal上,于是RBG和Kaiming He一帮人将Region proposal也交给CNN来做,提出了Faster-RCNN。Fater-RCNN中的region proposal netwrok实质是一个Fast-RCNN,这个Fast-RCNN输入的region proposal的是固定的(把一张图片划分成n*n个区域,每个区域给出9个不同ratio和scale的proposal),输出的是对输入的固定proposal是属于背景还是前景的判断和对齐位置的修正(regression)。Region proposal network的输出再输入第二个Fast-RCNN做更精细的分类和Boundingbox的位置修正。Fater-RCNN速度更快了,而且用VGG net作为feature extractor时在VOC2007上mAP能到73%。
个人觉得制约RCNN框架内的方法精度提升的瓶颈是将dectection问题转化成了对图片局部区域的分类问题后,不能充分利用图片局部object在整个图片中的context信息。可能RBG也意识到了这一点,所以他最新的一篇文章YOLO(http://arxiv.org/abs/1506.02640)又回到了regression的方法下,这个方法效果很好,在VOC2007上mAP能到63.4%,而且速度非常快,能达到对视频的实时处理(油管视频:https://www.youtube.com/channel/UC7ev3hNVkx4DzZ3LO19oebg),虽然不如Fast-RCNN,但是比传统的实时方法精度提升了太多,而且我觉得还有提升空间。
安装
1.下载https://github.com/sergeyk/selective_search_ijcv_with_python运行demo编译必要的函数,
复制到<python>Libsite-packages中重命名为selective_search_ijcv_with_python
2.下载ImageNet的RCNN的Caffe模型bvlc_reference_rcnn_ilsvrc13.caffemodel和deploy.prototxt
放到<caffe>modelsvlc_reference_rcnn_ilsvrc13文件夹
3.将<caffe>examplesimagesfish-bike.jpg复制到<caffe>Buildx64Releasepycaffe
4.将caffe_ilsvrc12.tar.gz解压到caffe-windowsdatailsvrc12
5.将ilsvrc_2012_mean.npy复制到caffe-windowsBuildx64Releasepycaffecaffeimagenet
4.将caffe_ilsvrc12.tar.gz解压到caffe-windowsdatailsvrc12
5.Cmd到<caffe>Buildx64Releasepycaffe目录运行下面代码(det_input.txt 为pycaffe中需要检测的图片名)
python detect.py --crop_mode=selective_search --pretrained_model=改成你自己的路径modelsvlc_reference_rcnn_ilsvrc13vlc_reference_rcnn_ilsvrc13.caffemodel --model_def=改成你自己的路径modelsvlc_reference_rcnn_ilsvrc13deploy.prototxt --gpu --raw_scale=255 C:Users改成你自己Desktopdet_input.txt C:Users改成你自己Desktopdet_output.h5
6.如果出现错误ValueError: 'axis' entry 2 is out of bounds [-2, 2)
依据https://github.com/BVLC/caffe/issues/2041
将<caffe>Buildx64Releasepycaffecaffedetector.py第86行的 out[self.outputs[0]].squeeze(axis=(2,3))
修改为 out[self.outputs[0]].squeeze()
7.运行下面python代码获取检测结果
1 import numpy as np 2 import pandas as pd 3 import matplotlib.pyplot as plt 4 5 6 df = pd.read_hdf('det_output.h5', 'df') 7 print(df.shape) 8 print(df.iloc[0]) 9 with open('acaffe-windowsdatailsvrc12det_synset_words.txt') as f: 10 labels_df = pd.DataFrame([ 11 { 12 'synset_id': l.strip().split(' ')[0], 13 'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0] 14 } 15 for l in f.readlines() 16 ]) 17 labels_df.sort_values(by='synset_id')# sort('synset_id') 18 predictions_df = pd.DataFrame(np.vstack(df.prediction.values), columns=labels_df['name']) 19 print(predictions_df.iloc[0]) 20 21 max_s = predictions_df.max(0) 22 max_s = max_s.sort_values(ascending=False) 23 24 # Find, print, and display the top detections: person and bicycle. 25 i = predictions_df[max_s.keys()[0]].argmax() #person 26 j = predictions_df[max_s.keys()[1]].argmax() #bicycle 27 28 # Show top predictions for top detection. 29 f = pd.Series(df['prediction'].iloc[i], index=labels_df['name']) 30 print('Top detection:') 31 print(f.sort_values(ascending=False)[:5]) 32 33 # Show top predictions for second-best detection. 34 f = pd.Series(df['prediction'].iloc[j], index=labels_df['name']) 35 print('Second-best detection:') 36 print(f.sort_values(ascending=False)[:5]) 37 38 # Show top detection in red, second-best top detection in blue. 39 im = plt.imread('acaffe-windowsexamplesimages\fish-bike.jpg') 40 plt.imshow(im) 41 currentAxis = plt.gca() 42 43 det = df.iloc[i] 44 coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin'] 45 currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='r', linewidth=5)) 46 47 det = df.iloc[j] 48 coords = (det['xmin'], det['ymin']), det['xmax'] - det['xmin'], det['ymax'] - det['ymin'] 49 currentAxis.add_patch(plt.Rectangle(*coords, fill=False, edgecolor='b', linewidth=5)) 50 plt.show()
输出结果
Top detection: name person 1.835771 swimming trunks -1.150371 rubber eraser -1.231106 turtle -1.266038 plastic bag -1.303266 dtype: float32 Second-best detection: name bicycle 0.866110 unicycle -0.359140 scorpion -0.811621 lobster -0.982891 lamp -1.096809 dtype: float32