zoukankan      html  css  js  c++  java
  • 「WC2015」未来程序

    果然 (color{black}Scolor{red}{iyuan}) 大佬做的题不是我等凡人所能理解的.


    Description

    题目链接: UOJ #73

    本题是一道提交答案题,一共有 (10) 个测试点。

    对于每个测试点,你会得到一段程序的源代码和这段程序的输入。你要运行这个程序,并保存这个程序的输出。

    遗憾的是这些程序效率都极其低下,无法在比赛的 (5) 小时内得到输出。

    你需要帮助B君得到这些程序的输出。

    Program1

    Description

    求两个数相乘并取模.

    Solution

    Python大法吼啊

    Code

    不需要了吧

    Answer

    11239440904485
    7551029211890
    20677492996370
    592966462292420
    69231182718627
    479525534330380
    544015996901435
    214227311823605
    73749675429767
    239498441843796
    

    Program2

    Solution

    观察可以发现:

    [aleftarrow 1a+2b+1c ]

    [bleftarrow 1a+1b+0c ]

    [cleftarrow 1a+0b+0c ]

    珂以构造转移矩阵:

    [left[ egin{matrix} 1 & 2 & 1 \ 1 & 1 & 0 \ 1 & 0 & 0 end{matrix} ight] ]

    直接跑矩阵快速幂就好啦.

    Code

    #include <bits/stdc++.h>
    
    typedef long long ll;
    
    ll a[5][5], ans[5][5];
    
    inline void pp(ll b, ll p) {
    	for (int i = 1; i <= 3; ++i)
    		for (int j = 1; j <= 3; ++j)
    			ans[i][j] = a[i][j];
    	--b;
    	for (; b; b >>= 1) {
    		if (b & 1) {
    			ll c[5][5];
    			for (int i = 1; i <= 3; ++i)
    				for (int j = 1; j <= 3; ++j)
    					c[i][j] = 0ll;
    			for (int i = 1; i <= 3; ++i)
    				for (int j = 1; j <= 3; ++j)
    					for (int k = 1; k <= 3; ++k)
    						c[i][j] = (c[i][j] + ans[i][k] * a[k][j] % p) % p;
    			for (int i = 1; i <= 3; ++i)
    				for (int j = 1; j <= 3; ++j)
    					ans[i][j] = c[i][j];
    		}
    		ll c[5][5];
    		for (int i = 1; i <= 3; ++i)
    			for (int j = 1; j <= 3; ++j)
    				c[i][j] = 0ll;
    		for (int i = 1; i <= 3; ++i)
    			for (int j = 1; j <= 3; ++j)
    				for (int k = 1; k <= 3; ++k)
    					c[i][j] = (c[i][j] + a[i][k] * a[k][j] % p) % p;
    		for (int i = 1; i <= 3; ++i)
    			for (int j = 1; j <= 3; ++j)
    				a[i][j] = c[i][j];
    	}
    }
    
    int main() {
    	freopen("program2.in", "r", stdin);
    	freopen("program2.out", "w", stdout);
    	for (int i = 0; i < 10; ++i) {
    		ll n, p; scanf("%lld%lld", &n, &p);
    		a[1][1] = a[1][3] = a[2][1] = a[2][2] = a[3][1] = 1, a[1][2] = 2;
    		a[2][3] = a[3][2] = a[3][3] = 0;
    		pp(n, p);
    		ll d = (ans[1][1] + ans[3][1] - ans[2][1] * 2 + p + p) % p;
    		printf("%lld
    ", d);
    	}
    	return 0;
    }
    

    Answer

    0
    1
    96
    64
    2503
    2523
    4452160
    557586868
    959316082
    1107500137
    

    Program3

    Solution

    就是一个零次方到四次方的求和.

    背公式+Python就好啦

    [sum_{i=1}^{n}i=frac{n(n+1)}{2} ]

    [sum_{i=1}^{n}i^2=frac{n(n+1)(2n+1)}{6} ]

    [sum_{i=1}^{n}i^3=frac{n^2(n+1)^2}{4} ]

    [sum_{i=1}^{n}i^4=frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} ]

    Code

    Python还要什么代码

    Answer

    1000000000000001
    1000000000000001
    2538972135152631808
    2538972135152631808
    2806098670314569728
    2806098670314569728
    6570342264898322432
    6570342264898322432
    10067259324320137216
    10067259324320137216
    

    Program4

    Solution

    count1 : 计算有多少无序点对均为 (1) ,只要计算 (1) 的个数即可.

    count2 : 计算每个 (1) 离它曼哈顿距离最近的 (0) 的距离之和,从 (0) 开始宽搜即可.

    Code

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    
    const int DX[4] = { -1, 0, 1, 0 };
    const int DY[4] = { 0, 1, 0, -1 };
    const int MAXN = 5010, MAXM = 5010;
    int n, m, type, seed;
    int dis[MAXN][MAXM], vis[MAXN][MAXM];
    bool BOOM[MAXN][MAXM];
    struct Node {
    	int x, y;
    };
    
    int next_rand(){
    	static const int P = 1000000007, Q = 83978833, R = 8523467;
    	return seed = ((ll)Q * seed % P * seed + R) % P;
    }
    
    inline void deal1(int n, int m) {
    	ll cnt = 0;
    	for (int i = 1; i <= n; ++i)
    		for (int j = 1; j <= m; ++j)
    			cnt += BOOM[i][j];
    	printf("%lld
    ", cnt * (cnt - 1));
    	return;
    }
    
    inline void deal2(int n, int m) {
    	queue <Node> Q;
    	for (int i = 1; i <= n; ++i)
    		for (int j = 1; j <= m; ++j) {
    			vis[i][j] = 0;
    			if (BOOM[i][j] == false) {
    				vis[i][j] = 1, dis[i][j] = 0;
    				Q.push(Node { i, j } );
    			}
    		}
    	while (!Q.empty()) {
    		Node now = Q.front(); Q.pop();
    		int x = now.x, y = now.y;
    		for (int k = 0; k < 4; ++k) {
    			int x1 = x + DX[k], y1 = y + DY[k];
    			if (x1 && y1 && x1 <= n && y1 <= m && !vis[x1][y1]) {
    				vis[x1][y1] = 1, dis[x1][y1] = dis[x][y] + 1;
    				Q.push(Node { x1, y1 } );
    			}
    		}
    	}
    	ll ans = 0;
    	for (int i = 1; i <= n; ++i)
    		for (int j = 1; j <= m; ++j)
    			ans += (ll) dis[i][j];
    	printf("%lld
    ", ans);
    	return;
    }
    
    int main() {
    	freopen("program4.in", "r", stdin);
    	freopen("program4.out", "w", stdout);
    	scanf("%d", &seed);
    	for (int t = 0; t < 10; ++t) {
    		int n, m, type; scanf("%d%d%d", &n, &m, &type);
    		for (int i = 1; i <= n; ++i)
    			for (int j = 1; j <= m; ++j)
    				BOOM[i][j] = bool(next_rand() % 8 > 0);
    		if (!type) deal1(n, m);
    		else deal2(n, m);
    	}
    	return 0;
    }
    

    Answer

    65300
    768644095452
    1614752
    12299725860312
    6474661
    480452490358302
    40508992
    480453060258360
    40509116
    40508835
    

    Program5

    Description

    计算有多少个全为 (1) 的矩阵.

    Solution

    单调栈裸题.

    但是......

    Code

    弄丢了......

    Answer

    36798
    780109
    4970330
    19778353
    79444881
    183972917
    324090457
    401682783
    493647857
    493666110
    

    Program6

    Description

    计算 (f^{(n)}(t)), 其中 (f(t)=at^2+b​).

    Solution

    显然,这个函数到后来一定会进入一个循环.

    容易想到用 (Floyd) 判圈算法.

    让快指针每次走 (2) 步,慢指针每次走 (1) 步,当两个指针第一次相遇时,让慢指针回到起点,两个指针再一起走,相遇时必在环的起点.(证明显然,留给读者做练习)

    不过窝用的是 (Brent) 判圈 ( exttt{QAQ}).

    3分钟就能跑出结果

    Code

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef unsigned long long ull;
    ull n, a, b, c, s, t, Step_s, Step_t, Steps;
    
    int main() {
    	freopen("program6.in", "r", stdin);
    	freopen("program6.out", "w", stdout);
    	for (int T = 10; T--;) {
    		scanf("%llu%llu%llu%llu", &n, &a, &b, &c);
    		s = t = 0;
    		Step_s = 0, Step_t = 2;
    		while (2333) {
    			t = (a * t * t + b) % c;
    			++Step_s;
    			if (s == t) break;
    			if (Step_s == Step_t) {
    				Step_s = 0, Step_t <<= 1;
    				s = t;
    			}
    		}
    		s = t = 0;
    		Steps = 0;
    		while (Steps < Step_s) {
    			++Steps;
    			t = (a * t * t + b) % c;
    		}
    		Steps = 1;
    		while (s != t) {
    			s = (a * s * s + b) % c;
    			t = (a * t * t + b) % c;
    			++Steps;
    		}
    		Step_t = (n - Steps) % Step_s + 1;
    		Steps = 1;
    		while (Steps <= Step_t) s = (a * s * s + b) % c, ++Steps;
    		printf("%llu
    ", s);
    	}
    	return 0;
    }
    

    Program7

    Solution

    数独.

    ( exttt{DLX}) 跑得飞快, 不过其实倒着爆搜也只要几秒.

    Code

    #include <bits/stdc++.h>
    #define rep(i, l, r) for (int i = (l); i <= (r); ++i)
    #define per(i, r, l) for (int i = (r); i >= (l); --i)
    using namespace std;
    
    bool a[20][20], b[20][20], c[20][20], vis[20][20];
    int Q[20][20];
    bool flag;
    
    inline int calc(int x, int y) {
    	return x / 4 * 4 + y / 4;
    }
    
    void dfs(int x, int y) {
    	if (x == -1) flag = true;
    	else {
    		if (vis[x][y]) {
    			if (y == 0) dfs(x - 1, 15);
    			else dfs(x, y - 1);
    		} else {
    			rep(i, 0, 15)
    				if (!flag && !a[x][i] && !b[y][i] && !c[calc(x, y)][i]) {
    					a[x][i] = b[y][i] = c[calc(x, y)][i] = true;
    					Q[x][y] = i;
    					if (y == 0) dfs(x - 1, 15);
    					else dfs(x, y - 1);
    					a[x][i] = b[y][i] = c[calc(x, y)][i] = false;
    				}
    		}
    	}
    	return;
    }
    
    int main() {
    	freopen("program7.in", "r", stdin);
    	freopen("program7.out", "w", stdout);
    	rep(t, 0, 3) {
    		rep(i, 0, 15) rep(j, 0, 15) a[i][j] = b[i][j] = c[i][j] = vis[i][j] = false;
    		rep(i, 0, 15) rep(j, 0, 15) Q[i][j] = 0;
    		rep(i, 0, 15) rep(j, 0, 15) {
    				char ch = getchar();
    				for (; !((ch >= 'A' && ch <= 'P') || ch == '?'); ch = getchar());
    				if (ch == '?') continue;
    				vis[i][j] = true;
    				int v = ch - 'A';
    				a[i][v] = b[j][v] = c[calc(i, j)][v] = true;
    				Q[i][j] = v;
    		}
    		flag = false;
    		dfs(15, 15);
    		rep(k, 0, t) {
    			if (!flag) puts("NO SOLUTION.");
    			else {
    				rep(i, 0, 15) rep(j, 0, 15) putchar(Q[i][j] + 'A');
    				puts("");
    			}
    		}
    	}
    	return 0;
    }
    

    Program8

    Description

    求满足一些不等式的七元组有几个.

    Solution

    显然是关于 (n) 的七次多项式.

    先用程序把 (1-8) 的结果跑出来.

    然后根据一些组合数学知识和因式定理或拉格朗日插值算出多项式.

    (Problem 1)

    [C_{n}^{7} ]

    (Problem 2)

    [frac{1}{60}n^2(n-1)^2(2n-1)(2n^2-2n+1) ]

    (Problem 3)

    [frac{1}{360}n^2(n-1)(n-2)(2n-1)(7n-3) ]

    (Problem 4)

    [frac{1}{48}n^3(n-1)^2(n-2)(3n-1) ]

    (Problem 5)

    [frac{1}{24}n^4 (n-1) (n-2) (n-3) ]

    (Problem 6)

    [frac{1}{60}n^3 (n-1) (n-2) (3n^2-6n+1) ]

    (Problem 7)

    [frac{1}{360}n^3 (n-1) (n-2) (n-3) (5n^2-9n+1) ]

    (Problem 8)

    [frac{1}{144}n^2 (n-1)^2 (2n-1) (5n^2-5n+2) ]

    (Problem 9)

    [frac{1}{36}n^3 (n-1)^2 (n-2) (2n-1) ]

    (Problem 10)

    [frac{1}{240}n^2 (n-1)^2 (n-2) (n-3) (2n-3) ]

    Oeis大法吼啊!

    然后就交给Python

    Code

    Answer

    1018333390
    993704934
    1053807588
    1144151985
    712062141
    530076748
    520686243
    337499021
    820275783
    80253986
    

    Program9

    Description

    给你 (10)( exttt{MD5}) 值并解密.

    Solution

    其实就是猜谜......

    没什么好说的.

    前两个是常识.(1984123456)

    第三个大眼观察发现chenlijie.

    第四个,因为特殊字符只有没几个,枚举并验证可得$_$

    五到八个都是一个单词,发现第二个程序后面有一个单词表,逐一试验可得分别为we,hold,these,truths.

    第九个是两个单词,历史较好的同学应该可以想到了,没想到也没关系,暴力还是可以过的,得到to be.

    最后一个拿头过,显然selfevident.

    (最后六个是《独立宣言》中的一句话)

    Code

    Answer

    1984
    123456
    chenlijie
    $_$
    we
    hold
    these
    truths
    to be
    selfevident
    

    Program10

    Solution

    我们发现程序的瓶颈在于 AZ 函数,而其他单词调用的次数不多,而 AZ 函数的本质就是若干次 _ 函数,处理就可以啦.

    Code

    (这么长的代码就不放辣,只放 AZ)

    void A(){__+=___*26ull;}
    void B(){__+=___*651ull;}
    void C(){__+=___*15651ull;}
    void D(){__+=___*360651ull;}
    void E(){__+=___*7950651ull;}
    void F(){__+=___*167340651ull;}
    void G(){__+=___*3355140651ull;}
    void H(){__+=___*63923340651ull;}
    void I(){__+=___*1154150940651ull;}
    void J(){__+=___*19688020140651ull;}
    void K(){__+=___*316229927340651ull;}
    void L(){__+=___*4764358535340651ull;}
    void M(){__+=___*67038159047340651ull;}
    void N(){__+=___*876597565703340651ull;}
    void O(){__+=___*10591310445575340651ull;}
    void P(){__+=___*6772687681910030955ull;}
    void Q(){__+=___*5479948192676037227ull;}
    void R(){__+=___*12292036863279645291ull;}
    void S(){__+=___*11448514006979854955ull;}
    void T(){__+=___*5543854012881322603ull;}
    void U(){__+=___*7009382195709231723ull;}
    void V(){__+=___*14337023109848777323ull;}
    void W(){__+=___*6754098618987856491ull;}
    void X(){__+=___*2452069220114645611ull;}
    void Y(){__+=___*12294754496077775467ull;}
    void Z(){__+=___*3690695698331353707ull;}
    

    Answer

    6754098618987872142
    12891177331947568152
    12891177331947568152
    14433265847896447980
    14433265847896447980
    15363876303000165384
    15363876303000165384
    15363876303000165384
    15363876303000165384
    15363876303000165384
    

    (color{black}{S}color{red}{iyuan}) 大佬太强辣,把我吊起来打!

    其实很多都是 (color{black}Scolor{red}{iyuan}) 大佬教我的 ( exttt{QwQ}).

    在此 (\%\%\%color{black}Scolor{red}{iyuan}).

  • 相关阅读:
    AAPay v1.5使用介绍
    我的第一款实用工具眼保程序(EyesBaby)
    C/C++中const关键字详解
    go 中flag模块
    go语言的一些基础知识
    12.Redis6中的新的数据类型
    性能测试实战30讲笔记——2.性能分析思路
    11.redis6的发布与订阅(编号大小无关内容)
    k8s——1.k8s介绍
    Docker——容器数据卷
  • 原文地址:https://www.cnblogs.com/realSpongeBob/p/WC2015T3.html
Copyright © 2011-2022 走看看