zoukankan      html  css  js  c++  java
  • unity之uv贴图画圆弧,圆弧面,不规则图形

    由于最近一直没有时间,所以这篇博客一直没发,下面我说说uv画圆弧,圆面,不规则面拼接。

    先来两张效果图


    图截的不咋滴,凑合着看吧,画圆弧主要用的贝塞尔曲线画的,我感觉这个比较简单,当然大家也可以使用圆的方程,抛物线的方程都可以实现这种效果

    但是我比较倾向于用贝塞尔,如果大家会ps的话,知道里边有一个钢笔工具,他就是贝塞尔的原理,贝塞尔的算法大家可以去网上搜搜,

    贝塞尔计算方法类网上也有很多

    下面先上我的代码

    using UnityEngine;
    
    [System.Serializable]
    
    public class Bezier : System.Object
    	
    {
    	
    	public Vector3 p0;
    	
    	public Vector3 p1;
    	
    	public Vector3 p2;
    	
    	public Vector3 p3;
    	
    	public float ti = 0f;
    	
    	private Vector3 b0 = Vector3.zero;
    	
    	private Vector3 b1 = Vector3.zero;
    	
    	private Vector3 b2 = Vector3.zero;
    	
    	private Vector3 b3 = Vector3.zero;
    	
    	private float Ax;
    	
    	private float Ay;
    	
    	private float Az;
    	
    	private float Bx;
    	
    	private float By;
    	
    	private float Bz;
    	
    	private float Cx;
    	
    	private float Cy;
    	
    	private float Cz;
    	
    	public Bezier( Vector3 v0, Vector3 v1, Vector3 v2, Vector3 v3 )
    		
    	{
    		
    		this.p0 = v0;
    		
    		this.p1 = v1;
    		
    		this.p2 = v2;
    		
    		this.p3 = v3;
    		
    	}
    	
    	// 0.0 >= t <= 1.0
    	
    	public Vector3 GetPointAtTime( float t )
    		
    	{
    		
    		this.CheckConstant();
    		
    		float t2 = t * t;
    		
    		float t3 = t * t * t;
    		
    		float x = this.Ax * t3 + this.Bx * t2 + this.Cx * t + p0.x;
    		
    		float y = this.Ay * t3 + this.By * t2 + this.Cy * t + p0.y;
    		
    		float z = this.Az * t3 + this.Bz * t2 + this.Cz * t + p0.z;
    		
    		return new Vector3( x, y, z );
    		
    	}
    	
    	private void SetConstant()
    		
    	{
    		
    		this.Cx = 3f * ( ( this.p0.x + this.p1.x ) - this.p0.x );
    		
    		this.Bx = 3f * ( ( this.p3.x + this.p2.x ) - ( this.p0.x + this.p1.x ) ) - this.Cx;
    		
    		this.Ax = this.p3.x - this.p0.x - this.Cx - this.Bx;
    		
    		this.Cy = 3f * ( ( this.p0.y + this.p1.y ) - this.p0.y );
    		
    		this.By = 3f * ( ( this.p3.y + this.p2.y ) - ( this.p0.y + this.p1.y ) ) - this.Cy;
    		
    		this.Ay = this.p3.y - this.p0.y - this.Cy - this.By;
    		
    		this.Cz = 3f * ( ( this.p0.z + this.p1.z ) - this.p0.z );
    		
    		this.Bz = 3f * ( ( this.p3.z + this.p2.z ) - ( this.p0.z + this.p1.z ) ) - this.Cz;
    		
    		this.Az = this.p3.z - this.p0.z - this.Cz - this.Bz;
    		
    	}
    	
    	// Check if p0, p1, p2 or p3 have changed
    	
    	private void CheckConstant()
    		
    	{
    		
    		if( this.p0 != this.b0 || this.p1 != this.b1 || this.p2 != this.b2 || this.p3 != this.b3 )
    			
    		{
    			
    			this.SetConstant();
    			
    			this.b0 = this.p0;
    			
    			this.b1 = this.p1;
    			
    			this.b2 = this.p2;
    			
    			this.b3 = this.p3;
    			
    		}
    		
    	}
    	
    }


    这就是贝塞尔计算类,很简单的计算方法,

    using UnityEngine;
    using System.Collections;
    using System.Collections.Generic;
    
    public class TriangleSubdivision  :MonoBehaviour{
    	public static int[] TriangulatePolygon (Vector2[] XZofVertices) {
    		//
    		int VertexCount = XZofVertices.Length;
    		//minx miny  maxx maxy
            float xmin = XZofVertices[0].x;
            float ymin = XZofVertices[0].y;
            float xmax = xmin;
            float ymax = ymin;
            for (int ii1 = 1; ii1 < VertexCount; ii1++)
            {
    			if (XZofVertices[ii1].x < xmin) 
    			{ 
    				xmin = XZofVertices[ii1].x; 
    			}
    			else if (XZofVertices[ii1].x > xmax) 
    			{
    				xmax = XZofVertices[ii1].x; 
    			}
    			if (XZofVertices[ii1].y < ymin) 
    			{ 
    				ymin = XZofVertices[ii1].y; 
    			}
    			else if (XZofVertices[ii1].y > ymax) 
    			{ 
    				ymax = XZofVertices[ii1].y;
    			}
            }
            float dx = xmax - xmin;
            float dy = ymax - ymin;
            float dmax = (dx > dy) ? dx : dy;
            float xmid = (xmax + xmin) * 0.5f;
            float ymid = (ymax + ymin) * 0.5f;
            Vector2[] ExpandedXZ = new Vector2[3 + VertexCount];
            for (int ii1 = 0; ii1 < VertexCount; ii1++)
            {
    			ExpandedXZ[ii1] = XZofVertices[ii1];
            }
    		ExpandedXZ[VertexCount] = new Vector2((xmid - 2 * dmax), (ymid - dmax));
            ExpandedXZ[VertexCount + 1] = new Vector2(xmid, (ymid + 2 * dmax));
            ExpandedXZ[VertexCount + 2] = new Vector2((xmid + 2 * dmax), (ymid - dmax));
    		List<Triangle> TriangleList = new List<Triangle>();
            TriangleList.Add(new Triangle(VertexCount, VertexCount+1, VertexCount+2));
            for (int ii1 = 0; ii1 < VertexCount; ii1++)
            {
    			//检查构成的三角形
    			List<Edge> Edges = new List<Edge>();
    			for (int ii2 = 0; ii2 < TriangleList.Count; ii2++)
    			{
    				if (TriangulatePolygonSubFunc_InCircle(ExpandedXZ[ii1], ExpandedXZ[TriangleList[ii2].p1],ExpandedXZ[TriangleList[ii2].p2],ExpandedXZ[TriangleList[ii2].p3]))
    				{
    					Edges.Add(new Edge(TriangleList[ii2].p1, TriangleList[ii2].p2));
    		            Edges.Add(new Edge(TriangleList[ii2].p2, TriangleList[ii2].p3));
    		            Edges.Add(new Edge(TriangleList[ii2].p3, TriangleList[ii2].p1));
    		            TriangleList.RemoveAt(ii2);
    		            ii2--;
    				}
    			}
    			if (ii1 >= VertexCount) { continue; }
    			//判断相同的三个点构成的三角形
    			for (int ii2 = Edges.Count - 2; ii2 >= 0; ii2--)
    			{
    				for (int ii3 = Edges.Count - 1; ii3 >= ii2 + 1; ii3--)
    				{
    					if (Edges[ii2].Equals(Edges[ii3]))
    					{
    						Edges.RemoveAt(ii3);
    						Edges.RemoveAt(ii2);
                            ii3--;
                            continue;
    					}
    				}
    			}
    			for (int ii2 = 0; ii2 < Edges.Count; ii2++)
                {
    				TriangleList.Add(new Triangle(Edges[ii2].p1, Edges[ii2].p2, ii1));
    			}
                Edges.Clear();
                Edges = null;
    		}
    		//大于点集外围的点
            for (int ii1 = TriangleList.Count - 1; ii1 >= 0; ii1--)
            {
    			if (TriangleList[ii1].p1 >= VertexCount ||TriangleList[ii1].p2 >= VertexCount ||TriangleList[ii1].p3 >= VertexCount)
                { 
    				TriangleList.RemoveAt(ii1); 
    			}
            }
    		//不在房间内的面
    		for(int ii3 = 0;ii3<TriangleList.Count;ii3++){
    			if(TriangleInPolygonOuter(XZofVertices,XZofVertices[TriangleList[ii3].p1],XZofVertices[TriangleList[ii3].p2],XZofVertices[TriangleList[ii3].p3])){
    				TriangleList.RemoveAt(ii3);
    				ii3--;
    			}
    		}
            TriangleList.TrimExcess();
            int[] Triangles = new int[3 * TriangleList.Count];
            for (int ii1 = 0; ii1 < TriangleList.Count; ii1++)
            {
    			Triangles[3 * ii1] = TriangleList[ii1].p1;
    	        Triangles[3 * ii1 + 1] = TriangleList[ii1].p2;
    	        Triangles[3 * ii1 + 2] = TriangleList[ii1].p3;
            }
    		return Triangles;
    	}
    	static bool TriangulatePolygonSubFunc_InCircle(Vector2 p, Vector2 p1, Vector2 p2, Vector2 p3) {
    		if (Mathf.Abs(p1.y - p2.y) < 0.0000001&&Mathf.Abs(p2.y - p3.y) < 0.0000001)
            { 
    			return false; 
    		}
            float m1, m2, mx1, mx2, my1, my2, xc, yc;
            if (Mathf.Abs(p2.y - p1.y) < 0.0000001)
            {
    			m2 = -(p3.x - p2.x) / (p3.y - p2.y);
                mx2 = (p2.x + p3.x) * 0.5f;
                my2 = (p2.y + p3.y) * 0.5f;
                xc = (p2.x + p1.x) * 0.5f;
                yc = m2 * (xc - mx2) + my2;
            }
            else if (Mathf.Abs(p3.y - p2.y) < 0.0000001)
            {
                m1 = -(p2.x - p1.x) / (p2.y - p1.y);
                mx1 = (p1.x + p2.x) * 0.5f;
                my1 = (p1.y + p2.y) * 0.5f;
                xc = (p3.x + p2.x) * 0.5f;
                yc = m1 * (xc - mx1) + my1;
            }
            else
            {
                m1 = -(p2.x - p1.x) / (p2.y - p1.y);
                m2 = -(p3.x - p2.x) / (p3.y - p2.y);
                mx1 = (p1.x + p2.x) * 0.5f;
                mx2 = (p2.x + p3.x) * 0.5f;
                my1 = (p1.y + p2.y) * 0.5f;
                my2 = (p2.y + p3.y) * 0.5f;
                xc = (m1 * mx1 - m2 * mx2 + my2 - my1) / (m1 - m2);
                yc = m1 * (xc - mx1) + my1;
            }
    		float dx = p2.x - xc;
            float dy = p2.y - yc;
            float rsqr = dx * dx + dy * dy;
            dx = p.x - xc;
            dy = p.y - yc;
            double drsqr = dx * dx + dy * dy;
            return (drsqr <= rsqr);
        }
    	static bool TriangleInPolygonOuter(Vector2[] pList,Vector2 p1,Vector2 p2,Vector2 p3){
    		Vector2[] centerPoint = new Vector2[3];
    		centerPoint[0] = new Vector2((p1.x+p2.x)/2,(p1.y+p2.y)/2);
    		centerPoint[1] = new Vector2((p1.x+p3.x)/2,(p1.y+p3.y)/2);
    		centerPoint[2] = new Vector2((p3.x+p2.x)/2,(p3.y+p2.y)/2);
    		for(int j = 0,crossNum = 0;j<centerPoint.Length;j++){
    	        for (int i = 0; i < pList.Length; i++)
    	        {
    				if (IsPointInLine(centerPoint[j].x, centerPoint[j].y, pList[i].x, pList[i].y, pList[(i+1)%pList.Length].x, pList[(i+1)%pList.Length].y)==0)
    	            {
    	                crossNum=crossNum+1;
    					continue;
    	            }else if(IsPointInLine(centerPoint[j].x, centerPoint[j].y, pList[i].x, pList[i].y, pList[(i+1)%pList.Length].x, pList[(i+1)%pList.Length].y)==2){
    					crossNum = 1;
    					break;
    				}
    	        }
    			if ((crossNum % 2) == 0)
    			{
    				return true;
    	        }
    			crossNum = 0;
    		}
    		
            return false;
    	}
    	//0   在外  1  在内   2  边上
    	static int IsPointInLine(float x,float y,float x1,float y1,float x2,float y2)
        {
    		float maxY =y1;
            float minY = y2;
    		if(y1>y2){
    		    maxY = y1;
    			minY = y2;
    		}else{
    			maxY = y2;
    			minY = y1;
    		}
    		float averageX = (x1+x2)/2;
    		float averageY = (y1+y2)/2;
    		if(y==averageY&&x==averageX){
    			return 2;
    		}
            if (y < maxY && y >minY)
            {
                if (x >(x1 + (x2 - x1) * (y - y1) / (y2 - y1)))
                {
                    return 0;
                }
            }
            return 1;
        }
    }
     struct Triangle
    {
    	public int p1;
        public int p2;
        public int p3;
        public Triangle(int point1, int point2, int point3)
        {
    		p1 = point1; p2 = point2; p3 = point3;
        }
    }
    class Edge
    {
    	public int p1;
    	public int p2;
    	public Edge(int point1, int point2)
        {
    		p1 = point1; p2 = point2;
        }
    	public Edge() : this(0, 0)
        {}
    	public bool Equals(Edge other)
        {
    		return ((this.p1 == other.p2) && (this.p2 == other.p1)) ||((this.p1 == other.p1) && (this.p2 == other.p2));
        }
    }

    这个类上一张已经说过了,就是画不规则图形的类,不过我这篇文章是把圆和不规则拼接出带有圆弧状的图形,看图大家就会明白了

    using UnityEngine;
    using System.Collections;
    
    public class ChartletManager : System.Object {
    	Bezier myBezier;
    	public ChartletManager(){
    
    	}
    	public GameObject WallChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,float height,Texture2D tex,float excursion,float zoom)
    	{
    		myBezier = new Bezier( startPoint,  new Vector3( excursion, zoom, 0f ),  new Vector3( excursion, zoom, 0f ), endPoint);
    		MeshFilter	myFilter = (MeshFilter)obj.GetComponent (typeof(MeshFilter));
    		Mesh myMesh = myFilter.mesh;
    		Vector3[] myVertices = new Vector3[52];
    		for(int i = 0;i<52;i++){
    			if(i<26){
    				myVertices[i] = myBezier.GetPointAtTime( (float)((i) *0.04) );
    				myVertices[i] = new Vector3(myVertices[i].x,myVertices[i].y,myVertices[i].z-height);
    			}else{
    				myVertices[i] = myBezier.GetPointAtTime( (float)((i-26) *0.04) );
    				myVertices[i] = new Vector3(myVertices[i].x,myVertices[i].y,myVertices[i].z);
    			}
    		}
    		myMesh.vertices = myVertices;
    		int[] myTriangles = new int[52 * 3];
    		for(int i = 0; i < 52; i++){
    			if(i<25){
    				myTriangles[i*3] = 26+i;
    				myTriangles[i*3+1] = i;
    				myTriangles[i*3+2] = i+1;
    			}else if(i == 25||i==51){
    				myTriangles[i*3] = 0;
    				myTriangles[i*3+1] = 0;
    				myTriangles[i*3+2] = 0;
    			}else{
    				myTriangles[i*3+2] = i;
    				myTriangles[i*3+1] = i+1;
    				myTriangles[i*3] = i-25;
    			}
    		}
    		Vector2[] myuvs = new Vector2[52];
    		for (int i = 0; i < 52; i++) {
    			myuvs [i] = new Vector2 ( (myVertices [i].x),  (myVertices [i].y));
    		}
    		myMesh.triangles = myTriangles;
    		myMesh.uv = myuvs;
    		myMesh.RecalculateBounds ();
    		myMesh.RecalculateNormals ();
    		obj.renderer.material.mainTexture = tex;
    		return obj;
    	}
    	public GameObject CircleChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,Texture2D tex,float excursion,float zoom)
    	{
    		myBezier = new Bezier( startPoint,  new Vector3( excursion, zoom, 0f ),  new Vector3( excursion, zoom, 0f ), endPoint);
    		MeshFilter	myFilter = (MeshFilter)obj.GetComponent (typeof(MeshFilter));
    		Mesh myMesh = myFilter.mesh;
    		
    		Vector3[] myVertices = new Vector3[27];
    		myVertices[0] = new Vector3(0,0,0);
    		for(int i =0; i <= 25; i++)
    		{
    			myVertices[i+1]  = myBezier.GetPointAtTime( (float)(i *0.04) );
    		}
    
    		myMesh.vertices = myVertices;
    
    		Vector2[] myuvs = new Vector2[27];
    		for (int i = 0; i < 27; i++) {
    			myuvs [i] = new Vector2 ( (myVertices [i].x),  (myVertices [i].y));
    		}
    		myMesh.triangles = TriangleSubdivision.TriangulatePolygon(myuvs);
    		myMesh.uv = myuvs;
    		myMesh.RecalculateBounds ();
    		myMesh.RecalculateNormals ();
    		obj.renderer.material.mainTexture = tex;
    		return obj;
    	}
    	public GameObject CircleAndTriangleChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,Vector3[] points,Texture2D tex,float excursion,float zoom)
    	{
    		myBezier = new Bezier( startPoint,  new Vector3( excursion, zoom, 0f ),  new Vector3( excursion, zoom, 0f ), endPoint);
    		MeshFilter	myFilter = (MeshFilter)obj.GetComponent (typeof(MeshFilter));
    		Mesh myMesh = myFilter.mesh;
    		Vector3[] myVertices = new Vector3[27+points.Length];
    
    		myVertices[0] = new Vector3((startPoint.x+endPoint.x)/2,(startPoint.y+endPoint.y)/2,(startPoint.z+endPoint.z)/2);
    		for(int i =0; i <= 25; i++)
    		{
    			myVertices[i+1]  = myBezier.GetPointAtTime( (float)(i *0.04) );
    		}
    		for(int i = 27;i<27+points.Length;i++){
    			myVertices[i] = points[i-27];
    		}
    		myMesh.vertices = myVertices;
    		Vector2[] myuvs = new Vector2[27+points.Length];
    		for (int i = 0; i < myuvs.Length; i++) {
    			myuvs [i] = new Vector2 ( (myVertices [i].x),  (myVertices [i].y));
    		}
    		myMesh.triangles = TriangleSubdivision.TriangulatePolygon(myuvs);
    		myMesh.uv = myuvs;
    		
    		myMesh.RecalculateBounds ();
    		myMesh.RecalculateNormals ();
    		obj.renderer.material.mainTexture = tex;
    		return obj;
    	}
    }

    为了方便大家测试,我把我的测试放在了一个类里,大家直接调这个方法即可,我是测试用的,大家可以修改成自己的脚本

    using UnityEngine;
    
    public class MyBezier : MonoBehaviour
    	
    {
    	public Bezier myBezier;	
    	public GameObject circleline;
    	public Texture2D tex;
    	void Start()
    	{
    
    		GameObject floorTexture = (GameObject)Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0)));
    		GameObject wallTexture =(GameObject) Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0)));
    		ChartletManager chartlet = new ChartletManager();
    		Vector3[] ceilVertices = new Vector3[4];
    		ceilVertices[0] = new Vector3(-4,0,0);
    		ceilVertices[1] = new Vector3(-4,-5,0);
    		ceilVertices[2] = new Vector3(4,-5,0);
    		ceilVertices[3] = new Vector3(4,0,0);
    //		ceilVertices[1] = new Vector3(-5,1,0);
    //		ceilVertices[2] = new Vector3(-5,-4,0);
    //		ceilVertices[3] = new Vector3(-2,-4.5f,0);
    //		ceilVertices[4] = new Vector3(-2.5f,-2,0);
    //		ceilVertices[5] = new Vector3(2,-2.5f,0);
    //		ceilVertices[6] = new Vector3(2.5f,-4,0);
    //		ceilVertices[7] = new Vector3(5,-4,0);
    //		ceilVertices[8] = new Vector3(5,0,0);
    //		ceilVertices[9] = new Vector3(4,0,0);
    
    		wallTexture= chartlet.WallChartletInMesh(wallTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),3.0f,tex,0,6);
    		floorTexture= chartlet.CircleAndTriangleChartletInMesh(floorTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),ceilVertices,tex,0,6);
    	}
    
    }
    测试用例,大家可以做自己想要的东西了,CircleAndTriangleChartletInMesh(GameObject obj,Vector3 startPoint,Vector3 endPoint,Vector3[] points
    ,Texture2D tex,float excursion,float zoom)
    我解释一下这个类的传递参数吧
    obj,就是传进来的obj对象,大家可以使用out,那个直接能用了
    startPoint圆弧起始点
    endPoint终点圆弧点
    points 是传入的不规则图形的各个点
    tex 是那张贴图
    excursion这个是圆弧的 倾斜度
    zoom是圆弧的大小就是圆弧顶点到起始点于终止点中间的那个点的距离   正规半圆这个值应该是圆半径的1.5倍
    using UnityEngine;
    
    public class MyBezier : MonoBehaviour
    	
    {
    	public Bezier myBezier;	
    	public GameObject circleline;
    	public Texture2D tex;
    	void Start()
    	{
    
    		GameObject floorTexture = (GameObject)Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0)));
    		GameObject wallTexture =(GameObject) Instantiate(circleline,new Vector3(0,0,10),Quaternion.Euler(new Vector3(0,0,0)));
    		ChartletManager chartlet = new ChartletManager();
    		Vector3[] ceilVertices = new Vector3[10];
    		ceilVertices[0] = new Vector3(-4,0,0);
    //		ceilVertices[1] = new Vector3(-4,-5,0);
    //		ceilVertices[2] = new Vector3(4,-5,0);
    //		ceilVertices[3] = new Vector3(4,0,0);
    		ceilVertices[1] = new Vector3(-5,1,0);
    		ceilVertices[2] = new Vector3(-5,-4,0);
    		ceilVertices[3] = new Vector3(-2,-4.5f,0);
    		ceilVertices[4] = new Vector3(-2.5f,-2,0);
    		ceilVertices[5] = new Vector3(2,-2.5f,0);
    		ceilVertices[6] = new Vector3(2.5f,-4,0);
    		ceilVertices[7] = new Vector3(5,-4,0);
    		ceilVertices[8] = new Vector3(5,0,0);
    		ceilVertices[9] = new Vector3(4,0,0);
    
    		wallTexture= chartlet.WallChartletInMesh(wallTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),3.0f,tex,3,8);
    		floorTexture= chartlet.CircleAndTriangleChartletInMesh(floorTexture,new Vector3( -4f, 0f, 0f ),new Vector3( 4f, 0f, 0f ),ceilVertices,tex,3,8);
    	}
    
    }
    
    如果我数值改改就会出现这种,zoom就是倾斜程度,当然也可以是负数,是往里凹进去的,excursion是负数就向另一个方向倾斜。
    凹进去的就是这种情况,具体情况大家可以测试,值的范围有限制的,超出了,会出现空的情况,当然我写的也有很多不足之处,大家可以修改修改

    
    

    
    
    不知为何 csdn编辑问题,我的图片文字与代码都混合了 所以乱了 我把我的工程打包上去 大家可以下载看看具体实现效果
    
    
    
    
    下载地址
    http://download.csdn.net/detail/pzw0416/6727303
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    

  • 相关阅读:
    从零开始学架构(三)UML建模
    【网址收藏】博客园主题美化
    完美解决国内访问GitHub速度太慢的难题
    SpringBoot+slf4j线程池全链路调用日志跟踪 二
    SpringBoot+slf4j实现全链路调用日志跟踪 一
    2021年java最全面试宝典【核心知识整理】
    [中级]系统集成项目管理工程师历年真题及参考答案
    线程池ThreadPoolExecutor最全实战案例
    大厂git分支管理规范:gitflow规范指南
    IdentityServer4
  • 原文地址:https://www.cnblogs.com/riasky/p/3478873.html
Copyright © 2011-2022 走看看