zoukankan      html  css  js  c++  java
  • BZOJ 3237([Ahoi2013]连通图-cdq图重构-连通性缩点)

    3237: [Ahoi2013]连通图

    Time Limit: 20 Sec   Memory Limit: 512 MB
    Submit: 106   Solved: 31
    [ Submit][ Status]

    Description

    Input

    Output

    Sample Input

    4 5
    1 2
    2 3
    3 4
    4 1
    2 4
    3
    1 5
    2 2 3
    2 1 2

    Sample Output



    Connected
    Disconnected
    Connected

    HINT

     

     


    N<=100000 M<=200000 K<=100000

     

    Source

     


    弱B。。的弱B题解。。。

    首先我们知道,可以把提问中没问的边缩成点。

    但是不影响复杂度。。。

    所以我们,把它拆成2半。。

    前一半缩点(不考虑后一半的询问),乱搞,后一半的不用考虑前一半的询问,乱搞。。。

    于是f(q)=f(q/2)+O(qc*a(qc)) O(f(q))=O(qlogqc*α(qc)) 


    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<functional>
    #include<iostream>
    #include<cmath>
    using namespace std;
    #define For(i,n) for(int i=1;i<=n;i++)
    #define Fork(i,k,n) for(int i=k;i<=n;i++)
    #define Rep(i,n) for(int i=0;i<n;i++)
    #define ForD(i,n) for(int i=n;i;i--)
    #define RepD(i,n) for(int i=n;i>=0;i--)
    #define Forp(x) for(int p=pre[x];p;p=next[p])
    #define Lson (x<<1)
    #define Rson ((x<<1)+1)
    #define MEMr(a,n,w) Rep(i,n) a[i]=w; 
    #define MEMF(a,n,w) For(i,n) a[i]=w; 
    #define MEM(a) memset(a,0,sizeof(a));
    #define MEMI(a) memset(a,127,sizeof(a));
    #define MEMi(a) memset(a,128,sizeof(a));
    #define INF (2139062143)
    #define F (100000007)
    #define MAXN (100000+10)
    #define MAXM (200000+10)
    #define MAXQ (100000+10)
    #define MAXC (4)
    long long mul(long long a,long long b){return (a*b)%F;}
    long long add(long long a,long long b){return (a+b)%F;}
    long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
    typedef long long ll;
    int n,m,q;
    struct comm
    {
    	int n,a[4];
    }ask[MAXQ],back[MAXQ*30],*back_tail=back;
    struct E
    {
    	int x,y;
    }e[MAXM*30],*e_tail=e;
    struct unionset
    {
    	int father[MAXN];
    	void init(int n){For(i,n) father[i]=i;}
    	int getfather(int x)
    	{
    		if (father[x]==x) return x;
    		return father[x]=getfather(father[x]);
    	}
    	bool union2(int x,int y)
    	{
    		if (getfather(x)==getfather(y)) return 0;
    		father[father[x]]=father[y]; return 1;
    	}
    }ufs;
    
    bool ans[MAXQ]={0};
    int newV[MAXN],newE[MAXM];
    void solve(int n,E *_e,int m,int l,int r)
    {
    	e_tail+=m;
    	E *e=e_tail;
    	copy(_e,e_tail,e);
    	static bool b[MAXM]={0};MEMr(b,m,0);
    	if (l==r)
    	{
    		Rep(j,ask[l].n) b[ask[l].a[j]]=1;
    		ufs.init(n);
    		int tot=0;
    		Rep(i,m) if (!b[i]) tot+=ufs.union2(e[i].x,e[i].y);
    		if (tot==n-1) ans[l]=1;
    		e_tail-=m;
    		return;
    	}
    	Fork(i,l,r) Rep(j,ask[i].n) b[ask[i].a[j]]=1;
    	ufs.init(n);
    	Rep(i,m) if (!b[i]) ufs.union2(e[i].x,e[i].y);
    	//Con
    	int n2=0;
    	For(i,n) if (ufs.getfather(i)==i) newV[i]=++n2;
    	For(i,n) if (ufs.getfather(i)^i) newV[i]=newV[ufs.getfather(i)];
    	Rep(i,m) e[i].x=newV[e[i].x],e[i].y=newV[e[i].y];
    	//Red
    	int m2=0;
    	Rep(i,m) if (b[i]) newE[i]=m2++;
    	Rep(i,m) if (b[i]) e[newE[i]]=e[i];
    	Fork(i,l,r) Rep(j,ask[i].n) ask[i].a[j]=newE[ask[i].a[j]];
    	
    	{
    		int m=l+r>>1,len=m-l+1;
    		comm *back_head=back_tail;
    		back_tail+=len;
    		copy(ask+l,ask+m+1,back_head);
    		solve(n2,e,m2,l,m);
    		copy(back_head,back_head+len,ask+l);
    		back_tail-=len;
    		solve(n2,e,m2,m+1,r);		
    	}	
    	e_tail-=m;
    	
    }
    int main()
    {
    //	freopen("bzoj3237.in","r",stdin);
    	scanf("%d%d",&n,&m);
    	Rep(i,m) scanf("%d%d",&e[i].x,&e[i].y);
    	scanf("%d",&q);
    	Rep(i,q)
    	{
    		scanf("%d",&ask[i].n);
    		Rep(j,ask[i].n) scanf("%d",&ask[i].a[j]),ask[i].a[j]--;
    	}
    	solve(n,e,m,0,q-1);
    	Rep(i,q) if (ans[i]) puts("Connected");else puts("Disconnected");
    	return 0;
    }
    


      






  • 相关阅读:
    路由器基础配置之ospf基础配置
    路由器基础配置之广播多路访问链路上的ospf
    路由器基础设置之ospf
    linux命令之文件系统权限操作常用命令
    路由器基础配置之路由重分布
    路由器配置 之 DHCP+DHCP中继服务配置
    路由器配置 之 PAP与CHAP认证
    基于链路的OSPF MD5口令认证
    压缩和归档操作(16个命令)
    基于链路的OSPF简单口令认证
  • 原文地址:https://www.cnblogs.com/riskyer/p/3246912.html
Copyright © 2011-2022 走看看