zoukankan      html  css  js  c++  java
  • 分支界定法详解

    分支界定法是求解整数线性规划最优解的经典方法。

    定义:

      对有约束条件的最优化问题(其可行解为有限数)的所有可行解空间恰当地进行系统搜索,这就是分支与界定的内容。通常把全部解空间反复地分割为越来越小的子集,称为分枝;并对每个子集内的解集计算一个目标下界(对于最小值问题),这称为定界。在每次分枝后,若某个已知可行解集的目标值不能达到当前的界限,则将这个子集舍去。这样,许多子集不予考虑,这称为剪枝。这就是分枝界限法的思路。

    背景:

      分枝界限法可以用于求解纯整数或混合的整数规划问题。在上世纪六十年代由Land Doig和Dakin等人提出。这种方法灵活且便于用计算机求解,目前已经成功运用于求解生产进度问题、旅行推销员问题、工厂选址问题、背包问题及分配问题等。

    思路:

      设有最大化的整数规划问题A,与它相应的线性规划问题时B。从解问题B开始,若其最优解不符合A的整数条件,那么B的最优目标函数必是A的最优目标函数z*的上界,记作z¯;而z的任意可行解的目标函数值将是z的一个下界z_。分枝界定法就是把B的可行域分成子区域的方法。逐步减小z¯和增大z_。最终求到z*

    举例:

  • 相关阅读:
    UVA 11488 Hyper Prefix Sets (字典树)
    UVALive 3295 Counting Triangles
    POJ 2752 Seek the Name, Seek the Fame (KMP)
    UVA 11584 Partitioning by Palindromes (字符串区间dp)
    UVA 11100 The Trip, 2007 (贪心)
    JXNU暑期选拔赛
    计蒜客---N的-2进制表示
    计蒜客---线段的总长
    计蒜客---最大质因数
    JustOj 2009: P1016 (dp)
  • 原文地址:https://www.cnblogs.com/sage-blog/p/3917836.html
Copyright © 2011-2022 走看看